POPULAR MECHANICS
DON'T YOURESELF
ENCYCLOPEDIA
POPULAR MECHANICS
DO-IT-YOURSELF
ENCYCLOPEDIA
FOR
HOME OWNER, CRAFTSMAN
AND HOBBYIST
IN TWELVE VOLUMES

Volume XII

Complete Index in Volume XII

J. J. LITTLE & IVES Co., Inc. • NEW YORK
DECORATION of the basement shop is usually limited and most crafters will settle for a coat of paint. For this purpose you can use powder-type cement paint mixed with water, any of the popular water-mix paints, rubber-bonded cement paint or plain whitewash. Because of the porosity of concrete walls or blocks, application is best done by spraying, using a double-header coat, that is, up and down stroking for the first, horizontal for the second. Sure, you can also slap the stuff on with a brush. Floors can be painted with the powder cement paint, rubber-bonded cement paint, or the ordinary oil paint sold for porch and deck use.

Maybe you will go in for a little more dolling-up, and in this direction you have a choice of many different kinds of composition boards as well as plywood and plain lumber. The right-hand photo above shows a shop paneled in 1 x 12-in. knotty pine with battens (lattice strips) over the joints. The boards are
If a new ceiling is to be fitted, it should be put on before walls. Preparatory work includes leveling all joints and running in wiring and lighting fixtures.

A new wall gives wonderful opportunities for putting in built-in shelves, false framing, cabinets and tool panels. A concrete footing should extend under them.

stained previous to applying the battens, after which the whole surface gets a coat of flat lacquer or varnish. The left-hand photo on first pg. shows a treatment using 16-in.-wide Weatherwood plank. This is a pressed-wood pulpboard, 1/2 in. thick, prefinished, available in various widths and in lengths up to 12 ft. Numerous other composition boards are equally satisfactory.

Any wall material must be applied over suitable furring strips fastened to the concrete. This provides a nailing strip and a level concrete surface, and also prevents direct-to-concrete contact which might pick up dampness. There are no particular tricks in applying furring—you use any size of timber and space it to provide a base for the wall material you plan to use. The main difficulty is in fastening the furring to the concrete and the worst part of this is boring holes in the concrete. This job can be speeded up considerably if you use a carbide-type masonry drill. Once the holes are drilled, they can be plugged with wood, rawhide, lead, or any of the various metal anchors made for this purpose. If the hole goes into the hollow of the block, toggle bolts are excellent for fastening. The application of the wall material itself is usually a simple job of nailing. It is best to keep the wall covering clear of the basement floor to guard against possible moisture absorption. The opening is neatly covered with a baseboard or molding. Possibilities of making built-in cabinets in connection with the paneling should be given consideration.

Similar treatment is given the ceiling. Furring strips may or may not be required, depending on the levelness of existing joists and the type of ceiling panel you are using. If you use a composition board in tile form, the furring would be spaced to

Furring is the main job in fitting a new wall. The wood is usually 1 x 3 or 1 x 4 strips. Worker here is fitting backing blocks to level the furring strips

Molding hides the joints between ceiling and wall and wall and floor. The wall covering for the job shown in photos here is 16-in.-wide Weatherwood planking

U. S. Gypsum photos
suit. Metal clips, as shown in photo at right, can be used for fastening, but ordinarily the board is simply toenailed with 1-in. No. 17 wire brads. Larger tiles or paneltile (larger sheets, scored) can be applied without furring.

Other than paint, the best floor treatments are asphalt tile or wood. Cemented linoleum should be avoided, although a loosely laid job is satisfactory in a dry basement. Concrete floors to be covered with asphalt tile should be patched and smoothed, since any humps or cracks will eventually show through. The tile is laid directly over the concrete, without felt backing, and the cement used should be the special type made for this purpose.

A wood floor gives the basement shop a comfortable feeling. A suitable type of construction is shown in the drawing at right. This is shown for new construction, but it can also be worked over an old floor—there is no actual need to bed the sleepers in concrete. The flooring is left a little clear of the wall all around so that air can circulate through several openings cut in the baseboard, as shown. The drawing shows a double floor, but a single thickness is satisfactory. The wood should be stored on the basement floor for three or four weeks before application so that it will have the proper moisture content. A worthwhile protection against slight dampness would be a coat of asphalt or hot tar applied to the concrete and underframing. Wood floors are 100-percent practical only when the basement is completely dry. However, a wood floor is sometimes put down simply to get above a wet basement floor. When the area is not too large, this is quite practical and, if the underframing and underside of floor are coated with asphalt pitch, the job will last for many years. Ventilation in this case would be important, and suitable limber notches and openings should be provided for passage of both floor water and air. Many crafters use a modification of this idea in the form of sheets of composition board or rubber matting.

Photo at top of page shows inset of metal clip used for fastening composition tiles to furring. Drawings below illustrate methods of laying a wood floor in a basement and applying tiles to special cement base.
WAX CASTING

Lost-wax casting makes it possible for the home craftsman to reproduce in metal any form he can model in wax. Unlike sand casting, which demands experience and unwieldy equipment, the technique of this method can be learned in a single day with a minimum of special equipment. It is particularly adaptable to making small metal parts for model work and jewelry, such as the ring shown in Fig. 1. Regardless of how delicate or intricate the design may be or how high the relief or depth of undercutting on the pattern, the final casting will be an exact duplicate. In professional work, ferrous alloys are often used, but these are difficult for the home craftsmen to melt because of the high temperatures required. However, bronze, brass, gold, silver, aluminum, zinc and the white-metal alloys are easily cast.

Briefly, the lost-wax process consists of making a pattern from wax, as in Fig. 3, placing it in a flask and filling the flask with plaster to form a mold, or investment, around the pattern, Fig. 9. After the plaster hardens, it is heated until the wax pattern melts and flows from the
mold, leaving a cavity shaped exactly like the pattern, Fig. 10. The mold, together with a crucible full of molten metal, is then placed in a centrifugal casting machine which forces the metal into the cavity, Fig. 11. After the metal has solidified, the casting is obtained by removing the mold from the flask and breaking it apart as in Fig. 12.

The wax, as well as the special mold plaster, can be compounded by the user. However, the centrifugal casting machine should be purchased, as the details of its design make it expensive and impractical to build. The cost of a commercial casting machine is comparable to the price of a small drill press or circular saw.

The simplest soft wax for patterns is made by mixing equal parts of beeswax and paraffin. Since paraffin is available in several different melting temperatures, it is possible to vary the hardness of the wax mixture. If the wax pattern is to be formed by cutting or carving, a still harder mixture can be made by adding ceresin and carnauba wax to the beeswax and paraffin. One mixture suitable for carving consists of equal parts of the four ingredients. Another is made from four parts each of beeswax and paraffin, two of ceresin and one of carnauba. The best method is to vary the quantities of each ingredient until you obtain a wax with the degree of hardness best suited to your needs. Regardless of the mixture, the wax must melt
and burn away completely when it is beaten so that no ash or residue remains in the plaster mold.

The plaster must withstand high temperatures without breaking down, and yet must crumble easily when wet. This is usually made by mixing plaster with soap-stone, asbestos lint or calcined diatomaceous earth. The best mixture for fine detail is the commercial material having a cristobalite base. A mixture containing plaster of paris, five parts, powdered coal ash, three parts, and powdered talc, one part, may be used successfully. A mixture of eight parts plaster, six parts asbestos powder and one part powdered talc also is good. The aggregates are mixed with water to the desired consistency.

A miniature gas or electric furnace or a torch can be used to burn out the wax pattern and melt the casting metal. For castings that can be enclosed within a ⅛-in. cube, a mouth blowpipe and Bunsen burner will do. For larger castings, an ordinary gasoline blowtorch, an oxyacetylene welding torch or any gas-burning torch having a forced-air supply may be used.

To make a piece of jewelry, for instance, the design is first drawn on paper to exact size. Then, using this as a guide, thin sheets of the transparent wax are laid over the design and the various shapes cut out with a sharp needle set in a wooden handle. The wax pieces are formed and then assembled by holding their edges together and touching the junction with a hot needle to weld the pieces together. When the assembly is completed, the rough places are scraped smooth with a small scraper, made from a piece of metal ⅛ in. wide fitted with a handle. Small pieces of wax may be added and carved as desired. Every extra minute spent in shaping the wax pattern will save 10 or 15 minutes in dressing down the final metal casting. Every defect in the wax pattern will be reproduced. In fact, with a little experience in patternmaking, you can reproduce minute detail visible only on the most careful inspection.

No vents are used in this type of casting. However, it is necessary to provide channels, known as sprues, to allow molten metal to reach all parts of the mold before it starts to solidify. These are made of pieces of wax, rolled into rods of about ¼ in. dia., and are fastened to the pattern by the hot-needle method as shown in Fig. 3. After the sprues are attached, the pattern is ready to mount in the flask of the casting machine. The flask is simply a length of brass pipe and a tightly fitting base which is shaped to form a funnel-like depression at one end of the plaster mold. A hole through the center of the base is fitted with a large-headed pin, the tip of which is wrapped with a length of sprue wax carefully shaped and melted into a ball, Fig. 4. The sprues of the pattern are then fastened to the wax ball with a hot needle. This holds the pattern firmly to the base in the desired casting position.

The success of the casting depends upon the care used in making the plaster mold, or investment, Fig. 9. A small amount of the investment is mixed to a creamy consistency and brushed on the pattern as in Fig. 6. The brush is used to work the investment into every detail of the pattern and also to remove small air bubbles. After covering, the investment is allowed to set until half hard but not dry. Meanwhile, the flask is lined with thin asbestos paper, wetted so it will adhere to the inner walls. The flask is then placed over the invested pattern, Fig. 7, and fitted to the base. Another batch of investment, mixed thick enough just to flow smoothly in a sluggish stream, is poured into the flask until a slight
Above, appearance of casting with sprue and sprue base after removing from flask. Tiny white spots are bits of investment. Below, sprues are cut off leaving stumps which are ground flush with casting.

crown is formed above the top. After the investment is semisolid, the crown is scraped level with the top of the flask. The investment is then allowed to set until hard, after which the sprue pin is removed and the base separated from the flask. The mold, which is still surrounded by the flask, can be dried in two hours by placing it in an oven heated to about 100 deg. F., but it is advisable to let it stand overnight.

The next step is removing the wax from the mold. This is done by the application of heat, about 500 deg. F., for a half hour. The wax melts and runs out as in Fig. 10. But, as it usually ignites and burns when it reaches the air, no wax is recovered. Hence, it becomes the “lost wax.” This may be done in a furnace or by supporting the flask over a medium flame of a gas burner. After the bulk of the wax is removed, the residue must be removed by a thorough burning out. In the furnace, this is done by increasing the heat to 1200 deg. F. for one hour. If a gas burner is used, a tin can turned upside down over the flask will act as an oven chamber. At the end of the burning-out period, the flask and mold, shown held with tongs by the gloved hand in Fig. 2, is securely clamped between the crucible and thrust plate located at one end of the rotating arm of the casting machine. The other end of the arm has an adjustable weight to counterbalance the flask, crucible and metal to be cast. It is essential that this balancing be done before the cast is made. The arm is fastened to a shaft projecting above the center of a metal base inclosing a strong spiral spring which rotates the arm. In use, the arm is turned against the spring about three turns and a gravity stop pin raised to hold it in place. The flame from a gas torch is then directed on the metal in the crucible, Fig. 8, until the metal is melted. When the metal is completely melted, a pinch of borax is dropped on it, and as soon as the metal surface shows bright and clean it is ready for casting. The counterweighted end of the arm is then pulled back about ¼ in. against the spring, thus allowing the gravity pin to fall clear, to release the arm. Centrifugal force causes the molten metal to flow into the mold cavity as in Fig. 11. After four or five minutes, the flask is removed from the machine and cooled slowly by quickly dipping it 10 or 12 times in a pan of water until it is cool enough to handle. Usually, the mold and its asbestos wrapping will slide out of the flask when cooled with water. If not, the investment, which has the consistency of thick sludge, will come out easily if dug into with a screwdriver. The casting will come out covered with a film of investment, which can be removed by scrubbing with a stiff brush. The casting, Fig. 13, now duplicates the original wax pattern and part of the base, Fig. 5. The base is removed by cutting or sawing the sprues as close to the casting as possible, and the remaining stumps of the sprues are ground off flush with the surface of the casting with a small abrasive wheel as indicated in Fig. 14. In most cases, any surface discoloration on the casting will disappear when buffed with a cloth or felt wheel loaded with polishing compound.
WEATHER STRIPPING

When sharp wintry winds reach full velocity and temperatures drop below freezing, the unsealed doors and windows of your home may account for as much as 40 percent of the total heat loss during an average day. Weather stripping alone can reduce this loss as much as 20 percent, even without the addition of storm sash and storm doors. There are many kinds of weather stripping, some designed only for temporary use, such as plain felt strips, felt strips with a wood or metal backing, and rubber-coated fabrics. The interlocking types made from bronze, brass or other rustproof metals are designed for permanent installations. The interlocking types are, of course, the best in the long run as they do not require a friction contact to form an effective seal. Doors and windows fitted with these types open and close as easily as before stripping, while the friction-seal stripping makes window sash somewhat harder to raise and lower and doors a bit more difficult to close. Both types, however, make a very effective seal against heat loss.

The initial cost of weatherproofing will be repaid in savings on fuel bills over a period of years. If you can afford only a few sash, put them on the sides exposed to the prevailing cold winds. The space between the regular sash and the storm sash should be as much of a dead-air space as possible. Therefore, the regular sash should be fitted with weather stripping, strips of wood and felt set snugly against the sash if regular metal weather stripping is not available. Also, the storm sash should be fitted into the frames tightly, which can be done by gluing strips of felt to the sash where they contact the frames. In some cases it may be advisable to seal cracks between sash and frames by adhesive tape. Ventilator holes in the storm sash are handy to admit a slight amount of fresh air, but when not used for this purpose, they must be sealed. These ventilator holes should be closed tightly by corks or snug-fitting covers, as leakage at these points defeats the purpose of sealing the sash.

Except along the bottom edge, a door can be weather-striped with the interlocking type, cut and bent to the shape shown in detail A of the series of detail illustrations A to K inclusive. If this material is not available from local hardware, lumber, or building-materials dealers, a sheet-metal shop can prepare it at small cost. Zinc is quite commonly used as it is easy to work, but any other corrosion-resistant metal, soft enough to be formed to the desired shape, may be used. A splice is made by snipping a tongue out of the sheet metal

One way to test a weather-stripped door for air leaks is by moving a lighted match along opening between door and jamb. Flame flickers if air is entering the room. Tests have shown that as much as 20 percent of fuel can be saved in many cases by having weather stripping on all windows and doors. Ordinary felt weather stripping can be fastened by gluing the stripping to the doorjamb where it contacts closed door
Before weather-stripping a door, true it up to assure uniform clearance between door and jamb. Be sure to plane edges square.

Be sure to plane edges square as in detail B and inserting it in the folded flange of the other piece. Rustproof nails should be used.

The first step before removing the door is to see that it is hung properly. It may be necessary to plane off some high spots, as in Fig. 2, or to shim up one of the hinges. If the wooden threshold is worn down in places, plane it level. Then, with dividers, scribe a line along the bottom of the door as in Fig. 3, using the threshold as a guide for the lower point of the dividers. These should be set so that the bottom of the door, when sawed along the scribed line, will clear by $\frac{3}{16}$ in. the top of the brass threshold to be installed, Fig. 10. After marking the bottom of the door, remove the door from the frame, block it on the floor with the hinged edge up, and remove the hinge butts. Using a rabbet plane or an electric hand plane such as shown in Fig. 7, cut a $\frac{1}{8}$ by $\frac{3}{8}$ in. rabbet the entire length of the door. With a hacksaw, cut a piece from the outside edge of each hinge.

Sheets of sheet metal weather strip, 0.020 to 0.024 in. thick, as shown in detail C, are first bent to fit and inserted into the brass threshold, so that the clip or crimped edge turns down at least $\frac{3}{16}$ in. above the threshold. Then, with a wood chisel, knock the tongues down as necessary to create a tight fit. The strip is held in place by nails driven through the tongue ends. These nails should be spaced not more than 4 in. apart. The nails are driven through the strip into the door frame, and the heads are countersunk.
butt just wide enough so that, when the butt is replaced on the door, it will clear the rabbet, Fig. 4.

Now, following the line scribed near the bottom of the door, saw off just enough to clear the brass threshold. If a felt door bottom is to be used, this can be nailed or screwed to the door after rehanging; but if the metal threshold is of the interlocking type with overhanging lip, then be sure that allowance is made for the interlocking bottom strip which is nailed to the bottom of the door, as in detail C, to interlock with the threshold lip. This can be bent to the dimensions given from the same material as the weather strip used on the rest of the door, unless, of course, a similar strip is purchased ready-made. Attach the strip, as shown, with the back of the hook flush with the inside face of the door.

As the lock side and the top of the door are weather-stripped in the same manner, rabbet the outside edge of each as in detail D. Dimensions should be maintained closely so that the edge of the weather strip will not extend beyond the outside face of the door, Fig. 8, as the strip which later is installed on the jamb must be fitted to interlock closely without binding. A suitable kerfing tool to cut the groove for the metal edge can be made from a piece of steel, with a cutting point filed or ground as in detail E. A short length of saw blade not less than \(\frac{1}{2}\) in. wide and bolted to a handle, also will serve this purpose. If there is sufficient clearance between the striker plate and the edge of the door, the weather
strip can be installed for the entire length of this side. Otherwise, cut the rabbet up to the striker plate and then taper the cut with a chisel as in Fig. 6.

The metal strip now can be nailed in place as in Fig. 5, with the outside edge flush with the edge of the door. Fit the strip at the corner by snipping out a vee and bending around the corner as shown in detail F. When necessary to join at other points along the length, pieces are fitted together with a tongue as in detail B.

With work on the door completed, the weather stripping is now installed on the jamb. Detail G shows one method used when installing the strip on a new door frame, the strip being nailed in a groove cut in the jamb. If the door frame is already installed, cut a shallow rabbet in the back of the stop to a depth equal to the thickness of the strip. In this way, it is unnecessary to groove the jamb. In either case, best procedure usually is to install the threshold and fit the metal top strip first, as the two sides are more easily fitted to these later. Install the threshold and the weather strip for the top as in detail H, fitting both to the mating strips on the door. Then the vertical strips are installed, making sure that the groove in the hinged edge of the door closes over the metal without binding. As the kerf cannot be cut to sufficient depth at the corners, snip the metal so that a neat bend can be made, as in detail J, before installing. The metal strip on the lock side of the door is installed in the same manner as the top strip.

If the door is warped slightly, this may be corrected in most cases by planing the stop to make uniform contact with the outer edge of the door before installing the metal strip. Where the stop on the lock side of the door is planed to fit the warped door, it will be necessary to relocate the striker plate so that the door can be closed securely without rattling. Finally, crimp a strip of spring bronze and nail to the stop, as in detail K and Fig. 9, to close the gap at the striker plate. One way of testing a weather-stripped door for leaks is to move a lighted match slowly along the opening between the door and the jamb as in Fig. 1. If air is leaking in at any point the flame will flicker. Generally, the leak can be stopped by springing the strip slightly.

Methods of applying the interlocking weather strip to windows are essentially the same as those used in fitting it to doors. When the stripping is purchased ready-made, specially formed strips usually are furnished for the meeting rails of ordinary double-hung windows, and also for case-ment sash. Spring-bronze weather strip of the contact type is usually furnished in rolls from which the required lengths are cut with tin snips. It is one of the easiest of all to apply as it is supplied in uniform widths with adjustable contact edges and a perforated nailing flange. This type of stripping is fitted to both doors and windows in much the same way. To simplify installation, the contact strip often is applied only to the sides and top of the door frame and a metal-reinforced felt door bottom is screwed to the inside bottom edge of the door. Felt weather stripping, with or without metal reinforcing, is a more or less temporary installation. While the initial expense of providing complete insulation for the house may be considerable, it will eventually pay for itself in a short course of time by the steady savings in fuel that will result.
WEATHER VANES

WIND DIRECTION may not be important to most homeowners but a weather vane pointing to windward atop the garage cupola adds that final touch in decorating the exterior of your home. The metal vane can be almost any design that suits your fancy, but profiles, or silhouettes, of horses either at rest or in action have always been the favorites. Shown at the right and detailed below are suggested cutouts for sheet-metal vanes which can be made of steel or aluminum, the latter being somewhat easier to work and less subject to corrosion. After you've selected the design you want, sketch it full size from the details and transfer the pattern to the sheet metal. Cut on the pattern lines with the jigsaw, using a fine-toothed, metal-cutting blade. Rough edges and sharp corners are then smoothed with a file and the completed cutout is riveted or welded to the directional arrow, which is made up from a length of 3⁄8-in. rod slotted at one end to take a sheet-metal arrow point, or head. The assembly is then welded to a 5⁄8-in. rod which pivots in a pipe sleeve. The lower end of the pivot rod is ground to a blunt, rounded point which seats on a metal plug welded to the inside of the pipe sleeve at the lower end as in the sectional view. The direction letters are cut from sheet metal and welded to short rods which are then welded to a coupling turned onto the upper end of the sleeve. The open top of the sleeve is closed by a brass rain collar soldered to the pivot rod while the lower end of the sleeve is welded to an angle-iron base which has been drilled for fastening to the ridge of the roof with wood screws. Finish both the vane and mounting assemblies with two coats of flat-black lacquer.
WEATHER VANES

In fair weather or foul, any of these vanes will tell you faithfully which direction the wind is blowing. The silhouettes are cut from outdoor plywood or sheet metal and finished in black so they can be seen clearly against the sky. If sheet metal is used, it should be fairly heavy to stand the buffeting of the wind. A suggested method of assembling and mounting the parts of the unit is given in the lower right-hand detail. Also note that the standard, which carries the arrow and silhouette, rides in a sealed bath of oil.
"Running Rastus" Never Tires in the Wind

With his legs moving rapidly, "Running Rastus" is an amusing weather vane. Both the body and legs are scroll-sawed from ¾-in. wood, after which the trailing edges of the legs are beveled like the blades of a toy windmill, which them simulate. In assembling, the legs are locked on the threaded ends of a tiny shaft with nuts, a piece of tubing being inserted through a hole in the body to serve as a bearing.

Indian-Hunter Weather Vane Adds a Frontier Touch

Crouching in a realistic manner atop a building, this silhouette of an Indian hunter with his strong bow, makes an ideal weather vane. The figure is cut from sheet metal and is soldered to a short rod, which fits inside a pipe welded to a short section of angle iron. A ball thrust bearing placed between the figure and the end of the pipe allows the weather vane to move in the slightest breeze. Letters on the standard indicating the directions further enhance the appearance.
WEAVING

Many people have made weaving a profitable hobby with table-top looms like this one, which has several features to make the work easier and faster.

WEAVING scarves, table runners, scatter rugs in varied colors and similar articles is not only an interesting pastime for long winter evenings, but it also can be developed into a profitable hobby. Once you have mastered the technique with a little practice, you will be able to produce woven articles that will find ready sale at a good price.

With the loom pictured above, you can produce many salable articles. It consists of a frame which supports such moving parts as the warp and whip beams, heddles and frames, a reed or beater and a shuttle, the latter being a separate part which is manipulated by hand. The shuttle carries the weft thread through the shed, a triangular space between the warp threads which is made by shifting the heddles after each stroke, or pass, of the shuttle. The beater or reed, hand-operated on small looms, is pivoted to the frame of the loom and is for the purpose of beating the weft thread into the warp after the shuttle has passed through the shed. The table loom detailed in Fig. 4,
TEXTILE TERMINOLOGY

WARP BEAM: The roller of a loom upon which the warp is wound.
HEDDLES: Vertically held parallel wires having an eye in the center through which the warp is drawn.
WARP: Threads that pass through heddles and reed.
SHED: Space between warp when heddles are raised or lowered.
WEFT (WOOF): Threads or yarn interlacing the warp at right angles.
SHUTTLE: An instrument upon which weft is wound for passing through warp shed while weaving.
REED (BEATER): A device to comb or beat the weft between the strands of the warp.

has two new features which make operation easier and faster. The heddles are shifted by a cam arrangement mounted on the top cross member of the frame and operated as in Fig. 1. Second important feature is the adjustable beater pivot detailed in Fig. 4. This adjustment gives five different positions of the beater pivot and enables the weaver to keep the reed always at 90 deg. with the cloth for more uniform work. A cloth beam fitted with a removable spline, Figs. 4 and 7, makes it unnecessary to tie knots in the warp threads when stringing the loom preparatory to weaving.

Before starting assembly, determine the size of the loom from the maximum width of cloth you desire to weave, keeping in mind, of course, the size limitations of the table-top type. As an example, the loom detailed in Fig. 4 is designed for a cloth width of 24 in. A smaller size also can be made with an over-all width of 16 in. for a cloth width of 12 in. This size is especially suited to weaving table runners, scarves, etc. Hardwood
is used for all parts of the loom frame, the beater frame, rollers, and the breast and whip beams. Maple is good but birch does equally well and saws and planes somewhat easier. The heddles and heddle frames, Fig. 3, and the reed may be purchased from dealers in craftwork supplies. These parts are inexpensive and obtaining them ready-made saves a lot of time. For average weaving a 30-dent reed—30 spaces per inch—is satisfactory, as running the warp thread through each dent will give 30 warp threads per inch. Other combinations are possible.

The heddle frames slide in grooves cut in the frame uprights, Fig. 4. The grooves should be about \(\frac{1}{16}\) in. oversize so that the frames will slide easily. Two dimensions, one on the heddles in Fig. 3 and another on the reed in Fig. 4, must be determined from these parts. Have the parts at hand before assembling the loom. Hardwood ratchets and pawls on the rollers, Fig. 4, are for the purpose of keeping tension on the warp threads and for rolling up the finished cloth on the cloth beam as the weaving progresses.

Fig. 2 shows methods of cutting 6 and 10-ft. warp yarn, or threads, to exact length. This done, you string the loom as in Figs. 5, 6 and 7. Notice in Fig. 5 how the odd-numbered warp threads are pulled through the heddles (C) with a threading tool made as in Fig. 6. The even-numbered threads go through the heddles (B). Both sets of threads pass over the whip beam and are wound on the warp beam at the rear of the loom. Study Fig. 9, which shows the warp threads in exaggerated size and in two colors for clarity. Also compare with the shed formed by shifting the heddle-control lever, Fig. 13, to the right-hand position as in Fig. 14. Fig. 7 shows how the ends of the warp threads are locked to the cloth beam with a spline which fits in a groove cut in the roller. Figs. 13 to 15 inclusive show the
operation of the loom when doing plain weaving. Fig. 10 shows tabby weaving. Notes on the detail drawings, Figs. 13 to 15, explain the sequence of operations clearly. One thing to watch in weaving is the tendency to pull the weft too tightly. This forms what weavers call a waist, Fig. 11, and causes the woven strip to become narrower as the weaving progresses. Generally, tension on the weft must be watched more closely on coarsely woven cloth. The greater the number of warp threads per inch the less tendency there is for this fault to appear in weaving.

Fig. 12 shows a vari-colored pattern woven in a table scarf. Here variations are made in the warp threads and two shuttles are used, one carrying the red and one the blue filler or weft. Shuttles are made from a strip of hardwood with the ends shaped as in Fig. 8. Length of the shuttle should be approximately half the width of the cloth being woven, although some weavers prefer a shorter shuttle.
WHEN to use the electric arc and oxy-acetylene flame for welding need not be a puzzling problem. Just remember that the arc is faster and enables you to minimize distortion, while the gas flame can be varied to control hardness of the weld. In many cases, however, either method produces results that are quite similar, thus making the choice a matter of convenience. Ordinary assembly work and repair jobs on wrought iron and mild steel, Figs. 1, 2 and 3, permit the use of either method. On other jobs, the form or thickness of the pieces at the point of weld, the kind of metal and the results desired often make one method better than the other.

Special Shapes: In welding special shapes where distortion or warping must be kept at a minimum the electric arc is better as the weld can be finished before the surrounding metal has been heated excessively. For example, in building up a broken gear tooth, Fig. 7, speed is necessary to minimize distortion. The tooth is built up as rapidly as possible with the electric arc, after which the finished weld is machined or otherwise finished.

Hardness of Steel Welds: With the oxy-acetylene torch, a reducing flame—one with an excess of acetylene gas—can be used to control hardness of the weld. In this case, some of the excess gas is broken
The electric arc minimizes distortion

down into carbon, which passes into the molten iron of the weld. This metal then becomes high-carbon steel and will be much harder and more brittle when it is cold, which is desirable in welding hard steel, as shown in Fig. 5. On the other hand, when an oxidizing flame or one with excess oxygen is used, some of the carbon in the weld metal will be burned out. The resulting weld will be softer but with a larger amount of slag on the surface, and will have a tendency to be pitted and coarse-grained. With reasonable care, however, jobs like the automobile fender, Fig. 8, can be welded successfully.

Cast Iron: The faster electric arc is better than gas welding on cast iron. Cracks due to uneven expansion of the cast iron and the weld metal are not so likely to develop. Preheating of the parts can sometimes be avoided if the weld is made in short steps with allowance for cooling between. The sink in Fig. 4 which is difficult to preheat, is an example of a cast-iron piece that can be welded better by this method.

Stainless Steels: The electric arc is also preferred for welding stainless steels. The danger of carbon pick-up from a gas flame and consequent loss of stainless qualities is thus eliminated. A heavily coated welding rod, which produces a shielded arc, Fig. 6, is usually employed. The analysis of this rod should be about the same as that of the steel to be welded, and the rod should be selected properly for welding with alternating or direct current. In welding, move the arc in a long narrow oval along the seam to keep the metal molten long for gas bubbles to escape. Stainless steel expands greatly upon heating and the strains produced around a welded joint in this metal are considerable. If the piece is annealed after welding to remove these strains, the joint will be much stronger. When a direct-current arc is used, the electrode should be positive and the work negative, reversing the usual procedure.

Aluminum: This metal can be welded satisfactorily either by gas or by the electric-arc method. Gas welding on aluminum is more convenient, however, as the metal has a very low electrical resistance. In nearly all cases, preheating of aluminum parts before welding is essential when using the oxyacetylene torch, as the metal expands and contracts greatly with heat changes. Care should be taken not to pre-
heat over 800° F. as aluminum becomes very weak at temperatures above this point.

There are several methods that can be used for preheating aluminum to be welded. An open forge may be the only means available, or perhaps a gas burner is handy. The latter method is convenient when welding a cracked aluminum crankcase, which, as shown in Fig. 9, has been placed over both burners. As the determination of exact temperature of a casting may be impossible with apparatus available, you can tell approximately the correct welding temperature by simply touching a stick of ordinary solder to the metal at the welding location. Just as soon as the solder melts when it contacts the aluminum, the piece is hot enough to commence welding. Aluminum and its alloys have a sharp melting point and collapse readily into a very fluid pool around the torch flame. This may cause difficulty in welding as the molten pool can become deep enough to blow through and run off while the rod is still solid. Technique in handling the torch and rod will help, but the use of welding rods of the same alloy as the metal to be welded—cast rod for cast aluminum, duralumin for duralumin, etc.—will tend to eliminate this difficulty.

Copper, Bronze, and Brass: Since the electrical resistance of this class of metals is very low, gas welding is again slightly more satisfactory than welding with the electric arc. Results are the same, however, by either method, when the work is done correctly. Copper, bronze, and brass do not expand excessively when heated but the molten metal is very fluid. This makes for faster fusion and often the welding can be done by simply laying a piece of welding rod along the joint or seam and flowing it in place with the torch, Fig. 10. Copper and its alloys conduct heat readily, and it is often difficult to keep the weld hot enough. Preheating the pieces will save gas and allow the welding to proceed faster.
WELLS-HOW TO DRIVE

Where water-bearing strata are quite near the surface it's easy to put down a well.

IN MANY LOCALITIES where the ground is fairly level over comparatively large areas you can generally tap a good water supply by merely driving down a pipe fitted with a well point. If you plan to drive a well you may save time by making inquiry about the depth of wells in the vicinity. Experienced well drillers often can tell with remarkable accuracy, just by the look of things, where you will be most apt to strike water with a well point and at approximately what depth. Once you have good advice on these points the rest is quite easy to accomplish.

Begin as in Fig. 1 with a 3-in. posthole auger of the type having a handle of pipe. Have at hand several 3-ft. lengths of pipe threaded to fit the handle, together with couplings. Run the auger down as far as it will go easily, then unscrew the handle, turn on another section of pipe and proceed, lengthening the auger handle in the same way until you reach a depth of 8 to 12 ft. Here the auger with its long handle becomes unwieldy and, besides, in most localities, a depth of 8 ft. will put the pump cylinder below the maximum frost depth. Now drive a length of 3-in. pipe into the auger hole to serve as a casing, Fig. 2. Next, assemble the well point and one or more lengths of pipe of sufficient combined length to reach above ground when the well point touches the earth at the lower end of the casing. Draw these joints tight. Screw on the drive cap, Fig. 3, and you're ready to go. Take it easy with the sledge, as heavy blows may buckle the pipe or have the effect of deflecting the point. As a rule the pipe drives quite easily. From there on it's merely a matter of adding pipe in short lengths until the driven point reaches water. Usually you can tell quite accurately when the point enters water-bearing strata. Check with a weighted cord lowered inside the pipe. If the point strikes a rock on the way down, it's usually best to pull it and start over again. Any attempt to force the point past a stone by heavy slogging may cause buckling.

When you're sure of water, assemble the pump cylinder, Figs. 4 and 5, and drive this down until the top end of the pipe reaches to a point an inch or so above the casing. Then install the pump as in Fig. 6 and pour a concrete platform as in Fig. 7. Slope the platform so water runs off on all sides.
THE amateur weatherman, or an instructor of classes in science and aeronautics, watchers at local observation posts and others whose hobbies or vocations require a study of wind conditions, will find this electrical indicator helpful. Although the anemometer and weathervane are located on the roof of a building or other raised support, direction and speed of the wind are indicated by lamps located conveniently inside a building. Speed of the wind is determined by counting the flashes of a blinking lamp, and the wind direction is indicated on a panel in which the letters N, E, S and W are jigsawed. A lamp behind each letter lights up whenever the weathervane, which acts as a switch to close the electrical circuit, points in the direction designated by one of the letters.

Although construction of the indicator may seem difficult at first glance, it is quite easy. Naturally, steel shafting is best for the main standard and the arm supporting the anemometer, and brass or copper is best for the rest of the exposed parts, but if these are unavailable, substitute materials can be used. For example, the weathervane and letters designating the directions can be tempered hard-pressed board, and the small rods supporting the letters and also the anemometer cups can be hardwood dowels. Also, it is possible to use wood for the standard and arm. If this is done, short shafts must be inserted in their upper ends to provide bearings. And, of course, the short rotating shafts of the vane and anemometer must be metal to withstand wear. If regular spun-metal wind cups for the anemometer are unavailable, the bowl parts of large spoons will serve, but they all must be of the same size and shape.
Fig. 2 shows how the pointed shafts of the anemometer and weathervane work in the drilled ends of their standards to reduce friction to a minimum. Notice that grooves near the lower ends of the shafts serve as oil reservoirs, which make frequent lubrication unnecessary. Reference to the left-hand detail of Fig. 2 will show you how to construct the weathervane brush assembly, which consists of four brushes mounted on a wooden disk, the latter being locked on the upper end of the standard with a setscrew to permit adjustment. The brushes are strips of spring brass or copper clamped in the slotted ends of screws turned up through the disk. The brushes make contact with a single-segment commutator sweat-soldered to the vane shaft. It is very important that the segment width be equal exactly to one quarter of the vane-shaft circumference, and that the segment center be exactly in line with the vane. In this way, when the indicator is wired as in Fig. 1, only one lamp will show on the indicator panel when the vane points north, east, west or south, as the commutator contacts only one brush. But if the vane points between two of these directions, the brush will contact two adjacent brushes and two lamps will show. For example, a northeast wind would cause the north and east lamps to show. A sheet-metal hood protects the brush assembly.

Construction of the anemometer mounting and brush assembly are similar to that for the vane, except that only one brush is used, and the commutator consists of a pointed screw. One contact is made for each revolution, thus causing the lamp to flash once for each revolution. The easiest way of calibrating the anemometer is to fasten it above the front of a car and drive on a calm day, counting the revolutions of the anemometer at various speeds. This data is recorded on a scale, which is placed near the indicator to aid in computing the wind speed by anyone counting the flashes of the lamp for 1 min. Electric current for the indicator is supplied by a 6-8-volt transformer, and Christmas-tree bulbs and sockets are used for the lamps at the indicating panel.

Improvised Coil-Winding Form

When winding coils for radios or other apparatus, a flashlight cell with a cardboard covering can be used as a form. Space four strips of cellulose tape at regular intervals around the cell, placing them lengthwise with the adhesive side up. The length of the tape strips should be slightly more than twice the width of the proposed coil. When the desired number of turns has been tightly wound over the tape, the loose ends of the tape are folded back over the coil and pressed firmly down to keep the winding in shape while it is being handled. The finished coil can be removed by slipping the cardboard cover off the cell and collapsing it enough so that it may be easily withdrawn from the coil.
WINDOW BOXES

HANGING gardens placed at the window-sill level are of immense decorative value to both the interior and exterior of any home. Foliage and flowering plants, certain dwarf shrubs, evergreens, potted slips, succulents, and even trailing vines can be grown in a window-sill garden and they will thrive with a minimum of care. Some varieties grow best in full sunlight; others do well in partial shade, and some in full shade. This means that, by carefully selecting the plants, you can grow luxuriant hanging gardens on all four sides of the house in a single season. Groups of plants selected for a given location should have the same or similar soil preferences, and also similar temperature and sunlight requirements. Only low-growing plants with heavy stems and short foliage should be selected for second-floor window gardens, as these will be more directly exposed to high winds and beating rains. If shelves are used at the second-story windows, holes should be scrollsawed in the shelf boards so that the plant pots can be set in the holes to about half their depth.

This arrangement prevents the potted plants from being blown off the shelves. If soil is to be placed directly in the box, the latter should be made of wood with a removable metal lining of zinc or aluminum. Cypress is the most durable wood, with redwood and pine a second choice. The selection and preparation of soils are important. As the amount of soil is limited by the size of the box, the plant food of an ordinary soil will soon be depleted. A good mixture for window boxes is composed of dark garden loam, rotted leaf mold and sand in the proportions of 2 parts loam, 1 part leaf mold and 1 part sand. After these components are mixed, a complete fertilizer is added. Then the whole mass is mixed thoroughly and sifted through a 1/2-in. mesh screen. To grow most varieties of succulents, proportions of the soil mixture should be 2 parts loam to 1 part coarse sand, no leaf mold being used.

In preparing the window box for planting, 1/2-in. drainage holes are drilled in the bottom in an over-all pattern measuring about 3 in. each way. Small pieces of
broken pottery (pieces from a flowerpot will do) are placed over each of the holes to keep fine material from sifting through. Then a 1-in. layer of coarse gravel, cinders or small pieces of broken pottery is placed in the bottom of the box. If the box is to be planted with succulents, the layer of this material should be 2 in. thick. Fill the box with the soil mixture to within about 1/2 in. of the top, pressing it down firmly. The mixture should be dry enough to handle easily without sticking to the fingers.

Plants to be grown in such a confined space as the average window box should be selected for type and habits of growth. Foliage plants with large individual leaves should not be planted adjacent to small, low-growing plants, except in extra-long boxes where the large plants can be placed at the ends of the box or in the center. If planted at random or alternately in a smaller box, the large leaves of the taller foliage plant will shade the smaller plants during some part of the day and may thus affect the rate and extent of growth. As a result of spreading root systems, large and vigorous growers also will rob small plants of needed soil fertility. Window-box gardeners generally select low-growing flowering plants for the sunny side, foliage plants and trailing vines for the areas of partial and full shade and small evergreens for the year-round window garden. Suitable evergreens may be any of the low, spreading varieties which grow slowly. Certain plants that will not mature fully in the shorter growing seasons of the colder regions are suitable for outside plantings only in the warmer climates.

Most window-box plantings must be sprayed or dusted regularly to keep off insects and prevent disease. Spray solutions can be applied with a syringe, and prepared dusts with an applicator usually furnished with the product. As a rule, only annuals are planted in outside window boxes in temperate regions. In most cases, potted plants placed in or on window boxes or shelves are taken inside during the colder months. This simplifies the insect and disease-control problem, at least to some extent. Plantings of evergreens that are well established will flourish the year 'round in exposed locations if they are properly cared for during the summer and are thoroughly watered just before the coming of freezing temperatures. At this time, a thorough watering is especially important for if the soil freezes "dry" the plants are likely to die.
Window boxes and shelves pictured and detailed in Figs. 1 to 5 inclusive are designed for mounting outside the window. Those shown in Figs. 6, 7 and 8 are built as a part of the house and, in the warmer climates, can be used for plantings of perennials. Shelves are supported on bandsawed brackets and decorated with an edging or valance in a scrolled design as shown on the corner shelf in Fig. 3. Several scrollsawed designs for brackets and edgings are shown in the crosshatched detail above. The shelf in Fig. 5 is supported by flat-iron scrolls which are especially attractive when used on walls of white siding or stucco. When shelves are attached to the wall with brackets, the inner edge should be set out from the wall about ¼ to ½ in. so that water and dirt do not collect at this point. Use brass screws for fastening the brackets to wooden walls and masonry drive nails or expanding fasteners on masonry walls. In either case, the fastenings should be sufficiently strong to support the weight of the box when it is full of damp soil.
IF YOU FIND, when remodeling a room in your home, that the window shades no longer fit windows that have been made smaller, try cutting them down yourself before you buy new ones. First, take measurements of the cut-down window casings. If a shade is to be installed inside the casing, measure exactly the distance across the opening where the brackets are to be placed and subtract 1/8 in. to allow for bracket clearance. If installing the shade outside the casing, add 3 in. to overlap at the sides. The length of the larger shade may be retained, as it will provide extra material should the shade tear at the roller at any time. Now, unroll one of the shades on the floor or, preferably, across the top of a large table, measure off the desired width with a yardstick and make a pencil mark. Make similar marks to enable you to draw a straight line connecting them, pictured in Fig. 3. Be sure to measure the shade so that you cut off the end fitted with a metal cap and pin rather than the end containing the spring mechanism. After removing the stick from the end of the shade, cut along the line, as demonstrated in Fig. 4, using scissors or a razor blade and metal straight-edge. This done, use a hacksaw to cut the roller and stick to the proper length, as in Fig. 1. Now, remove the pin and cap from the cutoff end of the roller, using pliers to extract the pin. Fit the cap over the newly cut end of the cut-down roller and drive in the pin with a hammer. Replace the stick and attach a pull cord to the end of the shade. In replacing a worn shade, place the old shade alongside a newer, larger one and use it for measuring, as shown in Fig. 2.
Large expanses of picture windows tend to project your rooms toward the outdoors and give the illusion of more space. A picture window is intended also to produce an attractively framed scene both from inside and out.

FIG. 1

Photo courtesy Libbey-Owens-Ford Glass Co.

WINDOWS

WHEN MODERNIZING YOUR HOME, the right kind of windows properly located and installed can work wonders in improving appearance and providing more comfort. Today's windows are vastly improved over those of only a few years ago, eliminating and minimizing many troubles inherent in the older designs.

Improved modern windows: Figs. 1 to 5 show a variety of modern windows. Improved features include quickly removable sash of double-hung windows, and new methods of counterbalancing sash, which eliminate sash cords, weights and pulleys. Besides wood windows, numerous metal windows have been developed. Some of these are rustproof and are precision-fitted to reduce filtration of air without sacrificing ease of sash movement. Among the developments in glass are glare-reducing, heat-absorbing and also insulating glass.

There are four types of windows: (1) Windows having vertically or horizontally sliding sash. The former also are called "double-hung" windows. (2) Casement windows, which are hinged at one side, and other windows such as centrally pivoted and folding "flue" styles. (3) Awning and louver-type windows of which the sash or panes swing outward on a horizontal axis. (4) Stationary windows in walls and roofs, Figs. 1, 3 and 22.

Sliding-sash windows: Double-hung windows, so called because the counterbalanced sash that slide vertically are "hung" in a casing, are shown in Figs. 5 to 7. On many windows of this type you can quickly remove either the upper or lower sash, Fig. 6, to facilitate washing them. Some window casings have three or four channels, two for the regular sash, and added ones for screen and storm sash. Double-hung windows can be provided with divided screens and storm sash, which are easily put in position or removed like regular removable sash. Fig. 7 shows a double-hung, aluminum window.
and details of its construction. Windows that have horizontally sliding sash, Fig. 8, are very similar in construction to double-hung windows, but differ in that they do not require any counterbalances.

Spring and friction counterbalances: Spring counterbalances and other methods of employing friction eliminate the need of sash weights, cords and pulleys on double-hung windows. The spring counterbalance shown in Fig. 10 comprises a narrow, enclosed, spring-actuated drum on which a thin, steel tape winds or unwinds. One kind is designed chiefly to take the place of sash-cord pulleys, and another is intended for overhead installation on new windows. The end of the rust-resistant tape is hooked to the edge of the sash, in a recess. One counterbalance of this kind is required for each sash.

Another counterbalance, shown in Fig. 11, consists of a long coil spring enclosed in a narrow sheet-metal housing of which the length equals the height of the casing. Two such counterbalances are used for each sash, the edges of the sash being grooved to accommodate them. Because of this manner of installation the balances also serve as efficient weatherstripping. There are a number of other counterbalancing methods that work on the principle of controlled friction. These may be spring-pressured slides on either side of the sash, or strips that wedge the sash against the parting or stop strips of the casing when a thumb lever is released.

Casement windows: Modern casement windows, such as shown in Figs. 2 and 9, of
wood or metal generally are installed to swing outward. The windows are opened and closed by means of a crank or lever, which also holds the sash securely in any open position. When closed, a fastener locks the sash and holds them tightly against the casing stops. Offset or double-acting hinges on casement windows bring the hinge edge of the sash far enough away from the casing to facilitate washing the outside of the panes as shown in Fig. 9.

Screens and storm sash usually are fitted to the inside of casement windows. An exception to this method is fastening the storm sash on the outside of the windows, Fig. 9. Some storm sash have a section that opens for ventilation. Either rigid or roll-type screens can be used. Casement windows offer excellent ventilation as they can be opened entirely from top to bottom. The sash can be set at an angle to divert moving outside air into the house. A disadvantage is that when these windows are not shielded by overhanging eaves or by canopies, rain can get into the house.

Awning-type windows: Awning-type windows such as shown in Fig. 4 have a number of sash that swing outwardly to any angle up to about 90 deg. for maximum ventilation. The sash are pivoted at their top edges. They often work in unison, being connected together with links actuated with a lever or crank, but some have sash that can be manipulated individually. The tilted sash normally prevents rain from getting inside. Each sash must be completely weatherstripped all around in cold climates. Screens and storm sash are applied on the inside.

Louver-type windows: Also known as “jalousies,” louver-type windows, Fig. 12, operate on the same general principle as awning-type windows, but differ in that they have narrow panes of thick glass. When the window is closed the panes overlap each other. All open simultaneously at any angle up to 90 deg., by means of a lever or crank. They are most popular in moderate climates where a tight seal against air filtration is not essential. They are also
popular for use on porches. The panes of glass are held in channel-shaped, spring-clip holders of metal, and these are usually pivoted centrally to vertical side plates. Screens or storm sash can be installed on either side if clearance is provided.

Framing: The tops of windows usually are lined up with the tops of doors for appearance. Before installing a window casing, an opening is made in the wall and framed as shown in Fig. 13. The exact size of the window casing should be known beforehand so that the right amount of clearance between it and the framing can be provided. The clearance varies with the particular type of window used according to the manufacturer’s recommendations.

The opening for a window is framed with double thicknesses of 2 by 4-in. stock for greatest strength and rigidity. The double header at the top should be set on edge with a ¾-in. filler block between the pieces to bring them flush with studs. For openings over 5 ft. wide it is best to use 2 by 6-in. or wider stock for the double header at the top. Added strength can be provided also by trussing as shown in Fig. 14. The short studs above and below the headers, called “cripples,” should be located on 16-in. centers with other studs.

Bay windows: Where a bay window is desired, it can either be part of the house wall built up on an extending part of the foundation wall, or it can be supported on extending floor joists as shown in Fig. 15. When remodeling to include a bay window, you can nail on extra pieces to extend from the joists, or you can secure the floor framing of the bay window to the house wall like
a wood porch floor. The roof framing for a bay window built on a house of frame construction is also shown in Figure 15.

Installing casings: To install a window frame or casing it is inserted into the framed opening from the outside. The blind casing should come over the edge of the framing not less than 3/4 in., as shown in Fig. 16. Next, the casing is adjusted level and plumb by means of wood wedges such as shingles. These are driven between the frame and the casing from the inside, at the sides and bottom, just tight enough to hold the casing in position. When plumb, you nail the blind casing to the framing.

Casings that have spring counterbalances can be nailed to the frame with finishing nails driven through the wedges on both sides. This, however, cannot be done on older windows having a well for sash weights. Building paper is laid over the joint between the sheathing and the blind casing before the outside wall covering is applied. Casings for use on frame construction differ from those on brick-veneer walls but the basic method of installation is similar to that described. A drip cap usually is included at the top of a casing as in Fig. 17. This should be covered with rust-resistant, sheet-metal flashing, brought up under the siding, clapboard or shingles.

Fig. 18 shows a cross section of a casement window installed on frame construction. On brick veneer, angle-iron lintels are used to span the top of the window opening. Metal casement windows often are screwed to a wood frame first, which then is installed in the window opening. On some metal windows projecting fins serve the purpose of flashing.

Inside trim: On a wood window of the
double-hung type the inside trim is applied as shown in Fig. 19. This gives the sequence of installing the trim which is done after the walls have been plastered or covered with wallboard. Instead of nailing on wood trim, you may prefer to use sheet-metal snap-on trim which is made by a number of manufacturers.

Stationary windows: Exceptionally large windows are generally stationary. The casing of a stationary wall window is rabbeded to accommodate the glass panes which are imbedded in putty or calking compound. Stop strips, similarly imbedded, are placed against the pane and are nailed on from the outside as in Figs. 20 and 21-A. Panels of glass over 5 ft. high or wide should have a ¼-in. clearance at one side and top, between the pane and the casing. On large windows it is often advisable to use insulating glass, which eliminates the need of storm sash. Special precautions must be taken when installing this glass as discussed under “Insulating glass.”

Where a room lacks ventilation because of large stationary windows, you can install screened, louver-type ventilators under them as shown in Fig. 21-B. Such ventilators may be tightly closed on both sides during cold weather. They can be fitted with insulation and a vapor barrier. If the height of the door is 18 in. or so, a standard insulating batt can be attached to the inside as shown. The door is hinged at the top edge and opens from the bottom. It can be adjusted to any open position and held there by means of friction-type storm-sash holders.

Glass-block windows: Windows made of glass blocks, as shown in Fig. 22, are strikingly modern. They also have excellent insulating value since the blocks are hollow and the space inside is partially evacuated
Glass blocks are available in many patterns. Some are transparent for visibility and others are translucent to provide privacy. An individual glass block is shown in Fig. 23, which also gives the sizes and shapes available. Where an opening for ventilation is needed in a glass-block window you can install a small metal window to bridge two courses. Individual glass blocks that come on hinged frames are also available for this purpose.

Glass blocks should never be used for load-bearing walls. The weight over glass-block windows should be carried by suitable lintels or girders. The size of an opening to accommodate glass blocks should be equal to their dimensions plus the space required for joints and for the expansion strips. Lateral support for side and top edges of a glass-block window usually is provided by forming a chase as shown in Figs. 24 and 25. This forms a channel into which the blocks fit. A chase may consist of channel iron, angle iron or wood molding of suitable size.

Installing glass blocks: The entire perimeter of the opening in which glass blocks are to be installed is given a heavy coat of asphalt emulsion over the area to be covered with mortar as shown in Fig. 25. If the openings are larger than 25 sq. ft., and if the height exceeds 7 ft., or the width exceeds 5 ft., expansion strips are installed at the jambs and head of the frame while the asphalt coating still is tacky. For openings smaller than this only an expansion space of ¼ in. at the top is necessary.

After placing mortar on the sill to produce a ¾-in. bed besides filling the concavity in the block, you lay the first course. Space the blocks ½ in. apart, and completely fill the vertical joints with mortar. You can use ready-mixed mortar, which requires only the addition of water. It should be mixed to a stiffer consistency than mortar used for brickwork. The blocks should be adjusted carefully so the top edges and faces are in perfect alignment. Steel tools should not be used to tap blocks into position. Light-diffusing and light-directing blocks can be set in one position only, each block being marked to indicate this.
After laying the first course, you apply half of the next mortar bed. Then lay a wall tie and apply the rest of the mortar. The wall tie should extend across the blocks the entire width of the glass. Where more than one tie is needed, the joints should be overlapped 6 in. Continue in the same manner to lay succeeding courses. Strike joints to get them smooth while the mortar is still plastic. Also rake out along the bottom and sides for calking. Remove surplus mortar from the faces of the blocks and wipe them dry. Final cleaning of the glass is done after the mortar has hardened.

Window glass: Ordinary window glass comes in two thicknesses; single strength (SS) for panes up to 12 by 16 in. in size, and double strength (DS) for panes up to 36 by 48 in. Double-strength glass is used generally for metal sash. Window glass comes in four grades; AA, which is specially selected quality, A grade, B grade and 'green-house' grade.

Heavy sheet glass or crystal glass comes in 3/16, 1/2 and 1/4-in. thicknesses, and in the AA, A and B grades. It is considerably stronger than regular window glass and costs considerably less than plate glass. For the 3/16 and 1/2-in. thicknesses, the pane size should not exceed 76 by 120 in. and for the 1/4-in. thickness, the pane size should not exceed 68 by 100 in.

Decorative glass and plate glass: Patterned glass from 3/8 to 1/2 in. thick, in many patterns and textures can be used to diffuse illumination, obscure vision and serve decorative or functional purposes.

Polished plate glass provides clear vision with minimum distortion. It comes in many thicknesses from 3/8 to 1 1/4 in. Heat-absorbing plate glass, which is pale bluish-green in color, and comes 1/4 in. thick, transmits 46.8 percent of the total solar radiation as compared with the transmission of 82.3 percent of regular 1/4-in. clear plate glass.

Insulating glass: This glass, detailed in Fig. 26, minimizes the transfer of heat and cold, and eliminates the need of storm sash. It consists of two panes separated by a gap, but hermetically sealed at the edges to a metal separating strip. Non-hardening, knife-grade glazing compound — not the usual putty — is used to bed this glass. It is supported on soft "setting" blocks or special glazing clips.

The bedding should be 1/6 in. thick on either side of the glass, and not less than 1/6 in. under the edges so that it will not come in contact with the sash. The rabbets in which the glass is set must be deep enough to conceal the metal separating strip and also provide space for setting blocks or clips. If the width and height of the pane add up to more than 80 in., the clearance between the glass and the bottom of the rabbet should be 1/4 in. all around. This glass cannot be cut down to size when installed as this will damage the air seal.

Steps in glazing: Glazing windows, Fig. 27, is an easy job. The procedure on wood sash is shown in Fig. 28. It is painted or primed with linseed oil first. When this is dry you spread a layer of putty or glazing compound in the rabbet and press the pane against it as in detail A until the putty starts to ooze out. Some putty is made for wood sash only, some for metal sash only, and some for both metal and wood.
The pane should be about 1/8 in. smaller than the opening. On wood sash you use glazier's points to hold the pane in place. Press or tap them into the wood about 4 in. apart, using the flat edge of a chisel as in detail B. On metal sash you use spring-type wire clips. After the points or clips are applied, you apply putty, detail C, then press it down and bevel it neatly with a putty knife as in detail D. You can prevent putty from sticking to a knife by wiping it with a turpentine-moistened rag. When the putty surface is dry you paint it, allowing the paint to overlap on the pane slightly. Metal beading strips, imbedded in putty, are sometimes used on the outside of windows. Some metal windows are designed to take snap-on glazing beads over putty.

Weatherstripping: Window joints can be made to fit tightly and thus minimize air leakage by applying weatherstripping. On double-hung wood windows metal strips are nailed in the channels on either side of the sash as shown in Fig. 29. Two types of weatherstripping for double-hung wood windows are shown in Fig. 30. The inserted type requires grooving of the frame. Compression-type weatherstripping is installed on casement windows as in Fig. 31.
the strips are cut out for window catches as necessary. There are various types of fabric, felt and rubber weatherstripping which are also easy to install.

Storm sash: Storm sash should fit snugly against the blind stop of a window casing as in Fig. 32, but should have a 1/8-in. clearance all around the edges as in detail A to compensate for expansion. For a tight joint you can seal the sash along the edges with felt or sponge-rubber strips, detail B, for which it may be necessary to rabbet the edges.

Storm sash in full width or in half widths can be used on double-hung windows as shown in Fig. 33. The half widths can be passed through opened windows thus eliminating the need for a ladder. Usually storm sash are held with hangers that are permanently attached to the window casings as in Fig. 33, and are used to hold screens also. Noiseless, friction-type sash adjusters allow sash to be swung outward for ventilation. Vent openings in sash that cannot be swung out can be provided with pivoted or sliding covers.

Storm sash for casement and awning-type windows are generally installed on the inside as shown in Figs. 34 and 35. Those that cover only individual sections of metal windows do not prevent condensation from forming on the frames. Where much of this trouble is experienced it is better to install storm sash of wood that cover window openings completely as in Fig. 34. Rubber or felt strips at all edges of such sash wipe against the top, sides and sill of the casing and thus provide a tight seal.

Window screens: You can obtain metal combination units consisting of storm sash and screens, which are installed in the frames of existing double-hung windows. This arrangement eliminates the storage problem of sash and screens.

Besides the usual galvanized-iron screen, you can get screen made of plastic, aluminum and phosphor bronze, which is non-rusting. A relatively new type of screen, called louver screen, and obtainable in aluminum, has parallel cuts about 1 in. long, about 18 per inch, and the metal between the cuts is bent at 45 deg. This arrangement shown in Fig. 36, produces shade and also tends to prevent penetration of driving rain.

Shutters on windows: Shutters on the outside of windows are used for decoration. They can be made of wood or exterior-type plywood, and are screwed or hooked in place. On brick construction the screws are driven into lead sleeves sunk in the mortar joints.

Inside shutters, particularly the double folding kind, often are preferred to draw drapes or venetian blinds. The shutters allow air circulation while restricting visibility, and therefore are especially serviceable for bedrooms.
Although designed primarily for summer cottages, these windows are suitable for installation in small ranch-type homes, particularly those with board-and-batten construction. From the outside, the louvered inserts appear to be ordinary window shutters.
The removable louver of these novel windows not only add to the architectural lines by giving the effect of shuttered sash, but they also provide ample air circulation in summer and serve the purpose of storm sash in winter. As detailed, the frame is fitted with solid, hinged shutters with a painted decoration on the inside, Figs. 1 and 4, while the openings are closed on the outside by removable louvers made as in Figs. 2, 3 and 7. The frame must be large enough to accommodate both the window sash and the louvers, which fit into openings 6 1/2 in. wide. Vertical members, or muntins, within the frame are dadoed into the sill and the stool is notched around them as in Fig. 3. The upper ends of the center members are simply toenailed to the upper rail of the frame. The single-pane fixed sash, Fig. 6, is fitted between the center frame members and is held in place with quarter-round molding as in section A-A. On the outside, the molding should be coped at the corners and attached with screws so that it is easily removed without damage. On the inside, the joints can be mitered and the molding nailed in place. Note from sections A-A and B-B in Fig. 6 that the apron overlaps the stool, while the sill is nailed flat on the header, not tilted.
at an angle. There are two ways of installing the frame: Assemble the frame first, and then fit it into the wall opening, or simply build it into the opening piece by piece. If the latter method is used, set the sill and the headpiece first. Then fit the side members and also the center members in place.

The inside panels, Figs. 1 and 4, are hinged at the outer edge and swing into built-up frames as in Fig. 4. The frames are made by nailing and gluing together strips of two different widths, making a frame rabbeted on all four inside edges. Likewise, two plywood panels are fastened together to form a matching rabbet, section C-C, Fig. 4. Tight closure of the panel is made by means of a two-part hardwood latch in scrolled design. Construction of the louvers is detailed in Fig. 7. Grooves to take the louver slats are laid out on the uprights, or stiles, as in the detail. The slats are of ¾-in. stock and the lower edges are beveled so that they are flush with the outer edges of the stiles when assembled. After assembly of the unit, the edges of the stiles are finished with half-round molding as in Fig. 2. Note that the molding is placed so that it overhangs the edges slightly. For summer use, screens are placed behind the louvers as in Figs. 2 and 5. In winter, the space can be closed by panels made by gluing together several thicknesses of felt paper. The louver unit is installed in the frame by placing the top end so that the short dowel enters the hole drilled in the frame. The bottom end is held securely in place by a single wood screw.
WINTERIZING YOUR CAR

You won't be the fellow who's stalled at the curb when the mercury tumbles if you give your car a complete checkup before cold weather sets in. Start planning now to have a car that's as dependable in winter as it is in summer.

When it comes to smooth cold-weather operation, one of the most important parts of the car is the cooling system with its valuable new filling of antifreeze. If you have a late-model car, all that may be necessary to condition the cooling system for winter driving is to clean the radiator with one of the compounds made for this purpose and flush it out with a garden hose. Simply allow the compound to remain in the system the length of time specified in the directions on the can. Then, disconnect the outlet hose from the bottom of the radiator and insert the garden-hose nozzle into the filler neck, flushing out the radiator with a gentle spray. Be sure to

<table>
<thead>
<tr>
<th>WINTER CHECK LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔ Flush radiator and cylinder block</td>
</tr>
<tr>
<td>✔ Inspect hoses and connections</td>
</tr>
<tr>
<td>✔ Add antifreeze and rust inhibitor</td>
</tr>
<tr>
<td>✔ Adjust fan-belt tension</td>
</tr>
<tr>
<td>✔ Test battery charge</td>
</tr>
<tr>
<td>✔ Clean battery terminals</td>
</tr>
<tr>
<td>✔ Inspect generator</td>
</tr>
<tr>
<td>✔ Check starter motor</td>
</tr>
<tr>
<td>✔ Inspect distributor</td>
</tr>
<tr>
<td>✔ Clean and adjust breaker points</td>
</tr>
<tr>
<td>✔ Check condenser operation</td>
</tr>
<tr>
<td>✔ Inspect and clean spark plugs</td>
</tr>
<tr>
<td>✔ Drain water from fuel tank</td>
</tr>
<tr>
<td>✔ Adjust carburetor</td>
</tr>
<tr>
<td>✔ Check fuel-line connections</td>
</tr>
<tr>
<td>✔ Inspect exhaust system for leaks</td>
</tr>
<tr>
<td>✔ Change to winter-grade lubricants</td>
</tr>
<tr>
<td>✔ Equalize brakes</td>
</tr>
<tr>
<td>✔ Cross-switch tires</td>
</tr>
<tr>
<td>✔ Lubricate hinges, locks, etc.</td>
</tr>
<tr>
<td>✔ Check weather stripping</td>
</tr>
<tr>
<td>✔ Touch-up rust spots</td>
</tr>
<tr>
<td>✔ Inspect windshield wipers</td>
</tr>
<tr>
<td>✔ Check defroster and heater</td>
</tr>
</tbody>
</table>
Radiators on newer cars can be flushed with a garden hose after cleaning compound has had time to do its work. Hose at radiator outlet is disconnected.

Radiator hoses are inspected and defective ones replaced. All hose clamps should be tightened carefully to prevent possible leakage of antifreeze solution.

disconnect the lower hose, rather than merely open the drain cock, as the latter will not permit a sufficiently fast flow of water to carry away all the rust and scale loosened by the cleaner. For more efficient cooling-system cleaning on all cars, but especially on older models having small-core radiators, reverse-flush the radiator and cylinder-block water jacket separately, as shown in Fig. 1. These parts are flushed individually so that foreign matter from the cylinder block does not enter the radiator. If one is available, use a flushing gun which combines water and air pressure to facilitate loosening and removing rust and scale. Remember to remove the thermostat from the cylinder-head outlet before flushing the water jacket. To determine if a radiator core is clogged prior to flushing it, disconnect the radiator inlet and outlet hoses and plug the connections tightly. Fill the radiator with water, leaving off the filler cap, and then pull the plug from the bottom, or outlet, connection. If the water gushes out of the opening, the core allows a free flow of water but, if the water flows rather slowly, the core is partially clogged and must be cleaned out.

After the cooling system has been cleaned, inspect the hoses and replace defective ones. When connecting the hoses, make sure that all the clamps are sufficiently tight to prevent leakage of the antifreeze. Also check around the shaft of the water pump for indications of leakage between the shaft and the bearing. If leakage is
evident, the worn parts of the pump should be replaced immediately, as this will not only result in a loss of antifreeze but may draw air into the cooling system. The air increases the volume of the coolant so that some of it is lost through the overflow and it also accelerates the formation of rust in the system. When the cooling system is in shape, add water, antifreeze and rust inhibitor. The latter is included in some antifreeze solutions. The liquid level in the radiator should be approximately 1 in. below the bottom of the filler neck so that when the solution becomes warm and expands it will not drain out through the overflow. The freezing point of an antifreeze solution can be determined by using a hydrometer made specifically for this purpose, Fig. 2. Use the correct hydrometer for the type of antifreeze in the system and test the solution at the particular temperature for which the instrument is calibrated. Don’t forget that the efficiency of the cooling system, as well as the operation of the generator, depends on the tension and condition of the fan belt. Replace a worn belt and adjust the tension by swinging the generator on its mounting so the slack in the belt is between ½ and ¾ in.

The condition of the battery is the first thing to consider when getting the electrical system in shape for winter driving. Remember that a battery is most efficient at a temperature of about 80 deg. F. and that its efficiency decreases to only 40 percent at a temperature of 0 deg. F. The chart, Fig. 3, graphically illustrates the reduction in cranking power available from a battery as the temperature decreases. Fig. 4 shows the increased power necessary to crank an engine under similar temperature conditions. By comparing these charts, you can realize the necessity for keeping the battery fully charged during the winter months. The battery charge is checked by using a hydrometer to read the specific gravity of the electrolyte solution. Note in the table, Fig. 5, that a fully charged battery cell has a specific gravity of 1.280 at 80 deg. F. However, if you take a hydrometer reading under extreme temperature conditions, be sure to correct it accordingly. Add 4 points (.004) to the reading on the scale for each 10 deg. the tempera-

With a hydrometer made especially for the purpose, check to make sure that the freezing point of the antifreeze solution in the radiator is sufficiently low.
breaker-point gap will range between .018 and .022 in., depending on the make of car, and it should be set carefully according to the manufacturer's instructions. The gap is checked with a thickness gauge and set by loosening the screw which locks the breaker-point plate and adjusting the eccentric screw, Fig. 6. Check the wires in the distributor for breaks and frayed portions. Examine the top of the distributor cap for cracks and be sure that the spark-plug cables and the center cable from the coil make good contact in the socket terminals. Also inspect the rain guards over the cables to see that they fit tightly and are not cracked. These prevent moisture from entering the distributor and, therefore, are important to good winter performance.

To check the operation of the ignition, disconnect the coil cable at the distributor. Then, while cranking the engine, hold the cable 1/4 in. from the cylinder-head block. If the spark jumps this gap, the ignition coil and its circuit are in good condition. Clean the spark plugs and space the electrodes by bending the side electrode to obtain the gap recommended by the manufacturer. This ordinarily will be from .025 to .029 in. Clean the electrodes with fine sandpaper and inspect the plug gaskets, replacing any that may be scored. When removing or installing the spark plugs, always use a socket wrench of the correct size to avoid damaging the porcelain. To replace the plugs, turn them into the cylinder head by hand as tightly as possible, and then tighten them one half to three quarters turn with the wrench. Be careful not to make them too tight.

Clean and tighten the generator connections, especially at the cutout, and inspect the brushes. Also see that the contact points on the voltage regulator are clean. Do not overoil the generator. A drop or two of oil on the bearings every thousand miles is sufficient, as too much lubricant coats the commutator with a film which results in arcing and pitting. This film can be removed from the commutator by merely touching the surface with 6/0 sandpaper while the generator is running.

The starter motor must be in good condition for winter driving. If necessary, clean the commutator with sandpaper and replace and align the brushes. Brushes worn to half their original size should be renewed, and they must be replaced parallel with the commutator segments. Polished spots on the armature core or field pieces indicate worn shaft bushings which cause the armature to rub against the field poles. In this case, new bushings should be installed. The starter motor, as well as the generator, is likely to be damaged by excessive oiling. A small amount of light cup grease applied to the bearings, unless they are the self-oiling
type, will furnish satisfactory lubrication. Carefully check the fuel system to see that it is functioning properly. All the fittings and lines on both the suction and pressure sides of the fuel pump must be tight and in good condition. The carburetor-float level should be set high enough to provide a richer mixture for winter. The automatic choke also is likely to have a winter setting to provide a richer starting mixture. The choke is adjusted by turning the thermostat control slightly, as shown in Fig. 8. Take a look at the carburetor air cleaner. If the outside of the unit is dirty, as indicated by the arrows in Fig. 7, you can be quite sure that the cleaner is no longer operating efficiently and should be removed for a thorough cleaning. Another way to check the cleaner efficiency is to remove it while the engine is running. If the engine speeds up considerably, the cleaner is either dirty or damaged. Should the air cleaner not be dirty after a few thousand miles of service, chances are that it is not working properly because of internal failure or by-passing of the air through a leak in the connection between the cleaner and the carburetor. Drain the fuel tank to remove any water and sediment and, if desired, add a special solution to the gasoline to absorb water condensation. This will prevent accumulated water from freezing in the fuel lines. The crankcase should be drained and flushed to remove sludge and other foreign matter which may clog the oil-filter screen and also cause sticky rings and valves. The crankcase oil should, of course, be changed to one of the recommended winter grades. As even braking is essential for safe driving on slippery pavement, see that the brakes are properly adjusted. Better traction and braking surface can be obtained by cross-switching the tires as shown in Fig. 10. To get maximum wear from your tires, it is a good idea to do this every 3000 to 5000 miles regardless of the season. Check the operation of the heater and defrosters. If you have a hot-water heater, you can increase its efficiency by flushing it out when you are flushing the radiator and cylinder head. Finally, make sure that the windshield wipers will give dependable service during the winter months. On wipers equipped with a water-spray attachment, fill the container with a solution of glycerin, 1 part, and water, 2 parts, as pictured in Fig. 9. This will aid in preventing ice formation on the windshield.
WHEN wiring old houses or adding new convenience outlets in houses already wired, it is first of all a job of careful planning to determine all the requirements including the location of the outlets, materials to use, wire size, load distribution and other factors. Then, it is just as important to do the work entirely in accordance with approved wiring practice to meet electrical and safety requirements.

Materials: For wiring an old house, the most convenient materials to use are armored cable, commonly known as B-X, and non-metallic sheathed cable, Fig. 2. General installation methods are the same for both. Knob-and-tube and conduit installations are more difficult in finished buildings and will not be considered as they occasion considerable damage to walls and floors. Also, knob-and-tube work is not permitted in many localities.

Code Requirements: The National Electrical Code, published by the National Board of Fire Underwriters, gives minimum requirements for safe electrical installations. All recommendations contained in these articles are in accord with the national code. However, some localities have additional restrictions and one should find out about these before undertaking a wiring job.

Types of Service: Service supplied by the power company may be alternating or direct current, usually the former at between 110 and 120 volts. Before making any plans, find out what type of service is to be used. In the case of both a.c. and d.c. there are two types of service commonly furnished; two-wire and three-wire. Fig. 3 shows the difference. Most power companies supply three-wire service, except for very small installations. The power company will install lines up to the house. From that point on the service connections (lines to the fuse boxes, including switches, meter, etc.) are usually installed at the expense of the owner. The power company
lays down specifications as to type and size of equipment and its location.

Service Connections: The easiest, and in most cases the required, method will be to inclose the wires from the power line inside rigid conduit, which is a special smooth pipe designed for holding electric wires. It must be galvanized. Conduit of the 1-in. size should be used for three No. 8 wires; 3/4-in. conduit will take two No. 8 wires. The conduit is run outside the building, where it is secured with pipe straps. A service cap of the type shown is installed at the top to keep out water. The conduit is bent into a curve of large radius where it enters the building as shown in Fig. 4.

The meter and main switch and fuses are often located in the basement, as close as possible to the service entrance. In some localities it is customary to install the meter outside the house to facilitate inspection, in which case special exterior equipment is required, which
As pointed out before, the power company will generally specify this part of the equipment.

Two-Wire and Three-Wire Connections: Typical service connections for two and three-wire 110-volt a.c. or d.c. are shown in Figs. 5A and 7. The connections to ground, and the use of white and black wires should be noted in particular. The white wire always should be grounded for convenience in tracing. Grounding of all electric conduits and boxes is a matter of safety as it automatically causes a fuse to blow if a live wire accidentally touches exposed metal parts, thus preventing dangerous shock and possible fires.

Effective grounding is accomplished by connecting a conduit from the switch box to a cold-water pipe by means of a special clamp.

Table I. As pointed out before, the power company will generally specify this part of the equipment.

<table>
<thead>
<tr>
<th>Wire Size, (in inches)</th>
<th>Maximum Load (Watts at 115 V.)</th>
<th>Conduit Size (in inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3-wire</td>
<td>2-wire</td>
</tr>
<tr>
<td>8 Type R</td>
<td>40</td>
<td>75</td>
</tr>
<tr>
<td>8 Type RH</td>
<td>45</td>
<td>77</td>
</tr>
<tr>
<td>6 Type R</td>
<td>55</td>
<td>74</td>
</tr>
<tr>
<td>6 Type RH</td>
<td>65</td>
<td>74</td>
</tr>
<tr>
<td>4 Type R</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>4 Type RH</td>
<td>85</td>
<td>81</td>
</tr>
</tbody>
</table>

* For grounding wire only, when required.
** If a service run exceeds 50 feet and includes more than the equivalent of two quarter bends, 1/4-inch conduit must be used.

The wires are run from the switch box to a water pipe and clamped to the pipe with a ground clamp of the type shown in Fig. 6. A single No. 8 white wire is run inside this pipe and securely fastened to the terminal provided at the pipe. A No. 8 copper wire should be fastened to this conduit and the power-line conduit. The grounding bushing, detail of 5A, makes this easy. The wire inside the ground conduit is attached to the proper terminal.
Fuses and Meter Connections: The main-line fuses should be installed in the box with the service switch. For most homes 30-amp. fuses are required. The connections to the meter are usually made by the power company. A short length of conduit can be run from the line-switch box to the fuse cabinet, and the wires can be pulled through readily. Bushings and locknuts must be used. The fuse box or cabinet contains one fuse for each branch circuit. The neutral or grounded wire is continuous or unfused at all points. However, some localities require fusing the neutral wire also. The “hot” wires (black wires) are fused in all cases as shown. When a fuse blows, the reason should be located and eliminated. A fuse block for a four-branch-circuit installation is shown in the circular insert above Fig. 10, while methods of wiring are shown in details A, B and C of Fig. 10. It is wise to get a fuse box larger than needed, to provide for future expansion.

Survey of Needs: Next determine the number and location of electrical outlets. By an outlet is meant any point at which electricity can be drawn from the line. This includes lighting fixtures, heating devices and machines that are permanently attached to the line, and convenience outlets for attaching portable lamps and apparatus. Switches are not counted as outlets. It is best to be rather liberal in planning outlets. There is no reason for omitting lights in any room, even closets. All ceiling lamps should be controlled by wall switches. Lights on stairways should be controlled by switches at top and bottom. Convenience outlets should be spaced about one every 10 ft. of wall space (counting doors and windows), in living rooms, and usually 15 to 20 ft. in bedrooms and dining room. It is best to locate them where particularly needed. Generally they are placed just above the baseboard. At least

![Diagram of fuse connections and meter connections](image_url)
Locating live wires with test-prod-and-lamp assembly when adding new outlets to a branch circuit

TABLE II—WIRE SIZE FOR BRANCH CIRCUITS

<table>
<thead>
<tr>
<th>Wire Size</th>
<th>Max. Safe Load</th>
<th>Use Fuse Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>1725 Watts—115 V.</td>
<td>15 Amps.</td>
</tr>
<tr>
<td>12</td>
<td>2300 Watts—115 V.</td>
<td>20 Amps.</td>
</tr>
<tr>
<td>10</td>
<td>3450 Watts—115 V.</td>
<td>30 Amps.</td>
</tr>
<tr>
<td>6</td>
<td>5750 Watts—115 V.</td>
<td>50 Amps.</td>
</tr>
</tbody>
</table>

two outlets should be provided in the kitchen and outlets in the basement should be located to care for washing machine, iron, mangle and workshop.

Branch Circuits: Each branch circuit usually feeds a number of outlets. In most homes all branch circuits are wired with No. 14 wire. The load on each branch circuit is therefore limited by the carrying capacity of this size wire, or to 15 amperes. In planning branch circuits, therefore, it is wise to limit the possible demand to a value below 15 amps. As most electrical appliances are rated according to power consumption in watts, and volts times amperes equal watts, the maximum safe load for No. 14 wires is 115 times 15, or 1725 watts. Generally circuits are designed for an estimated load of 1200 watts at most, as required in many cities. Frequently it is also required that no branch circuit include more than twelve outlets.

Generally it has been found that independent circuits should be used for the following devices or groups of devices: Oil burners; laundry lights and outlet for washing machine or mangle; workshop lights and outlets for power-driven tools; refrigerator; any heating appliance drawing more than 1000 watts; any apparatus with larger than 1/4-hp. motor. Should any appliance draw more than 1500 watts, larger wire as specified in Table II will be required for its circuit.

In three-wire systems it is quite important that the load be balanced or evenly distributed between the two legs of the
circuit. There is a complete 110-volt circuit between each hot wire (black wire) and the grounded wire (white wire) of a three-wire system. The loads on these two legs should be approximately equal.

Connecting Wall Switches: There are two methods of connecting wall switches. In the double-loop method, Fig. 8, the hot and grounded wires are led into the outlet box. A cable is run from the outlet box to the wall switch and is connected as shown. Note particularly the use of the different colors of wire. The hot wire to the outlet box is black as usual. This is connected to the white wire leading to the switch. The black wire from the switch, which is hot when the switch is closed, and the white or grounded wire are then connected to the fixture.

The single loop is an alternative method which can be used where the double loop would be inconvenient. For example, if the lead to a fixture passes right past the site for the switch; or if the lead to a fixture must be brought up from below. Connections are made as shown in Fig. 9. The hot wire is broken before it comes into the outlet box.

Use of Three-Way Switches: Three-way switches are installed to act as illustrated in Fig. 12. They are always used in pairs so that lights may be turned on or off independently at two locations. The color scheme for single and double loop methods of connecting this type of switching circuit is shown in Fig. 13.

Locating Live Leads: When adding new outlets to a branch circuit, it is necessary to locate live wires into which the new lines can be tapped. To accomplish this, first open the switch at the meter, and then open an outlet box that you think will offer the desired leads. The tape is removed and the wires are separated carefully so that there is space of at least an inch between them and no chance of their touching each other. Then the main switch is closed and all other switches turned off. Each pair of wires is now touched with the prods of a test lamp, as in Fig. 11. If the lamp lights, the two wires it is touching are permanently hot and will serve as a starting point for the new connections.

Location of Hidden Outlet Boxes Determined by Using Compass

Electrical outlet boxes for wall plugs often become “lost” when covered by mistake during plastering. To locate the buried-box, use a magnetic compass instead of marring the wall by tapping and exploratory digging. Hold the compass in the normal, horizontal position and slide it up and down the wall. When near any large piece of metal, such as an outlet box, a marked deflection of the needle will occur.

Locating a Short Circuit In Home Appliances

When electric fuses repeatedly blow out in the home and you suspect a short circuit in one of your lamps or appliances, try this test to locate the trouble. Turn off all wall and ceiling lights and pull the plugs of all lamps and appliances. Then, screw a 100-watt light bulb into the socket where the fuses have blown. If the bulb lights immediately, it indicates a short somewhere in the house wiring, in which case the main switch should be thrown and an electrician called at once. However, if the bulb does not light, plug in the lamps and appliances one by one and watch the effect on the bulb. If, when a lamp is plugged in and turned on, the test bulb lights to its full brilliancy but the lamp bulb does not light at all, the short is in that lamp. If no short is present, both bulbs will light at half brilliancy. Only heavy-wattage heating units and motorized units free of shorts will become warm when subjected to this test, although the test bulb may light to full brilliancy.
WIRING

Installing the Equipment

ALTHOUGH the switch and outlet boxes are not installed until after the cables have been pulled through partitions and floors, it will be necessary to locate the exact position of the switch and outlet boxes first, and then to make the wall and ceiling openings. In this way the cables can be pulled from one opening to the next, and the ends of the cable left extending from the openings for, later testing and subsequent attachment of the boxes.

Openings for Outlet Boxes: Switch boxes may be used singly or a number of them can be combined side by side which is called "ganging." In the latter case the sides of the boxes are removed and the remaining portions attached together to form a single large box. Whether the wall opening is to accommodate one switch box or a number of them, the procedure of cutting an opening just large enough, and no larger, is the same. First locate the approximate position between two studs, carefully drill a hole in the wall and remove just enough plaster to find the opening between laths. Then, mark the outline of the box on the wall with a pencil so that one lath will cross the center. Then, with a hacksaw blade, carefully cut out a section of this lath along the pencil marks and saw into the adjacent ones just enough to form a hole to take the box, Fig. 14, so that the small tabs at the top and bottom of the box can be screwed to the uncut portions of lath. The hacksaw blade should be used so that it cuts on the pull stroke.

To install a ceiling outlet box, the most common types of which are shown in Fig. 16, use a bar hanger of the type shown in Fig. 17. A wire is fastened to the movable stud and the bar is pushed through a hole in the ceiling, after which the wire is used to pull the stud back to project through the opening. The hanger is turned so that the bar lies across the lath, which will distribute the load. The outlet box is to be attached to this stud as in Fig. 16. The box may or may not be countersunk in the
plaster, as shown, depending on the size of the fixture canopy.

Installing Cable: It is easy to pass a cable from point to point when there is a clear space between joists or studs extending all the way from one outlet to the next. Another simple job is to install a wall outlet on the first floor, as you can usually drop the cable down into the basement where it is connected to the nearest outlet box. But where the cable must cross studs as in Fig. 19, you can either drop into the basement or you can run the cable behind the baseboard, removing plaster to form a groove for the cable. To drop the cable into the basement you will have to pass it through the partition plate. Two methods of doing this are shown in details D and E of Fig. 20. To pass the cable through partition plates at the ceiling as in Fig. 19, it may be possible to drill this hole from above, as in detail A of Fig. 20. The hole can be plugged later. Otherwise the method shown in details B and C, Fig. 20, can be followed. To do this, first slit the wallpaper as in Fig. 21, fold the paper back and make a hole large enough so that you can insert the bore at an angle to go through the plate. Then drill a second hole straight across at the bottom but only partly through the sill, after which the cable can be passed through the plate easily as in detail C of Fig. 20.

When passing a wire from one floor to another, it may be necessary to go through a sill and plate as in detail F of Fig. 20. When encountering other forms of obstructions, it is sometimes possible to run the cable exposed through attics, and in closets where exposed cable is not objectionable. For example, Fig. 22 shows a cable run around the obstruction that was drilled through in detail F of Fig. 20. In some cases the baseboard can be removed.
and the cable can be hidden behind it where it comes up through the floor, making it even less noticeable.

In pulling cables from point to point, you will find a "fish wire" handy. This is first passed through the channel and then the attached cable is pulled through. Any fairly stiff wire will be suitable. In some cases it is necessary to use two lengths of fish wire as in Fig. 26. In this case one length is pushed into the opening at the ceiling and pulled out at the baseboard opening. A hook is formed on the end of this wire and pushed up through the hole in the sill. A hook is also formed on the end of the second wire, which is pushed down from the top. The two wires must be hooked together, which may require some effort and patience. Then by pulling at the upper outlet and guiding the wire at the other openings, it is possible to pull the hooked joint out at the top, which leaves a continuous length of wire between outlets. Besides

the use of fish wires, ordinary furnace chain is useful for pulling up wires through partitions. It is dropped down from an upper opening and the lower end is pulled through sill holes by means of short wire hooks, after which the wires of the cable are attached and the cable is pulled up.

A length of cable long enough to reach from one outlet to the other, with a couple of feet surplus, is cut next. The manner of cutting B-X is shown in Fig. 25. Non-metallic cable is cut with a sharp knife. The wires are cut with a pair of side-cutting pliers. The end of the cable is fastened securely to the end of the fish wire and it is then fed in at one opening while the wire is pulled at the other opening and guided at temporary openings between the two. The entire cable is pulled in leaving only about 8 or 10 in. for connections at the outlets.

Connecting Cable to Boxes: After all cables have been located and their ends project from the holes, the switch and outlet boxes are installed. Each box has a number of "knock-outs" and the required number of these must be removed by striking them with a ball-pee
Then the cable covering is removed about 8 in. from the end. Do this carefully to avoid damage to the wires which are left extending. Now fit a connector to the cable and attach to the box as in Fig. 28, driving the locking nut home with a screwdriver as in Fig. 27. Before a switch box is screwed to the lath, the tabs on the top and bottom are adjusted so that when fastened in place, the front edges of the box will be flush with the surface of the wall.

Splices: As all connections are made within outlet boxes, there will be no great strain on splices, except in the case of drop lights. For all connections but drop lights, use the pigtail splice shown in Fig. 24, although this can be used also for drop lights if strain on the splice is relieved by tying an underwriters' knot in the drop cord, Fig. 29. The knot rests on the bushing of the outlet-box cover and takes the strain.

Testing: Before soldering splices, and before attaching fixtures, switches, or wall outlets, the circuits must be tested. With the main switch off, connect two or three dry cells in series to the new circuit. A buzzer with two lengths of wire attached is used. When touched to the two wires which are to be attached to a wall outlet or to any outlet not controlled by a switch, the buzzer will operate. When connected to the wires for a fixture controlled by a wall switch the buzzer should not work unless the two wires for the switch are touched together. If three-way switches are used, all three of the wires should be joined together at each switch. Test three-way switches also with separate wires. If one lead is connected to the "hot" wire and the other to any grounded object (water pipe, radiator, etc.), the buzzer should work. If the buzzer is connected to a grounded wire and to a grounded object, it should not buzz. If B-X is used, the metal tube and all outlet boxes are grounded, and they should be tested in this way. If the buzzer operates when it is not supposed to, it indicates a short circuit at some point. If it does not work when it should, it indicates an open circuit (a broken conductor or faulty connection).

Soldering and Taping Splices: All splices must be made mechanically and electrically sound, and they must be soldered and insulated in a manner equal to the original insulation. The copper wires must be scraped or sanded clean before joining. After testing, rosin or non-corrosive paste soldering flux—not acid flux—is applied.
and the wire is heated with a blowtorch or a hot soldering copper. Then wire solder, either plain or rosin-cored, is applied to the hot joint. If properly performed, this operation will give a perfectly tight and secure joint that will not loosen. The soldered joint is next wrapped with rubber tape as shown in Fig. 24. First fold a short length over the tail of the splices. Then wrap the splice spirally with rubber tape, starting from the insulation on one wire and overlapping the turns, completely covering the bare wire with rubber as thick as the original insulation. Finally wrap the whole splice with friction tape in the same manner, applying two layers to complete the splice.

Attaching Fixtures: Switches, wall outlets and fixtures are attached next. If the screws for attaching the wires to the device are of different colors, the silver colored one is to be attached to the white wire and the brass colored one to the black wire. In the case of lighting fixtures which come wired with lampcord, one of the wires will probably have a tracer thread of a distinct color woven into the insulation. This is to be connected to the white or grounded wire in the outlet box. Large ceiling fixtures generally employ a “hickey” which attaches to the stud in the outlet box and also to the stem of the fixture. See Figs. 18 and 23. A canopy sliding up and over the stem conceals all connections. Small fixtures may be fastened as shown in Fig. 17, by means of a strap screwed to the box or to the stud, and to which the fixture itself is screwed.

Finishing: To finish the job, flush plates are installed over all wall outlets and switches. Bakelite plates in a variety of colors are generally used, although mirror or metal parts are also available. All temporary openings should be plastered over with patching plaster, which is available at any hardware store.

Baseboards and molding that were removed should be nailed to the studs, not to the lath. Holes in the floor should be plugged. A plug of the same kind of wood should be used as a rule, but in an inaccessible place, a cork held in place with hellec is often satisfactory. Finally, wall paper that has been removed should be fastened back and any place where paint has been damaged should be touched up.

Tape Protects Floor Outlet

A strip of cellulose tape applied over the openings of an electric outlet in the floor of a room that is being remodeled will keep dust and bits of debris from getting into the plug. Leave the tape on until the work is finished and the dirt removed from the surrounding area.

Cutting Holes for Outlet Boxes Without Cracking Plaster

When cutting a hole in a lath-and-plaster wall for an electrical outlet box or switch, the lath frequently has a tendency to break away from the plaster and to cause it to crack or to become loosened. One electrician avoids this by marking out the area to be cut away and driving a wood screw into a lath at the approximate center of the hole to be cut. Then, pulling on the screw with his free hand in order to hold the lath securely against the plaster, he cuts the hole with a hacksaw blade. The blade is held so that the teeth make the cut on the pulling stroke.

Unused Ceiling-Fixture Circuit Adapted for Wall Receptacle

When the ceiling fixture has been removed from a living room, the unused wall switch usually is left intact. If this is the case in your home, you'll find it a simple matter to replace the switch with a convenient outlet. First, remove the decorative cover from the ceiling-outlet box and join, solder and tape together the ends of the two live wires inside the box. Then, disconnect the wall switch and wire a duplex receptacle in its place. This extra outlet will come in handy for a night light and numerous electrical appliances.
WOOD BITS

All about wood-boring bits—how they work—how to select the right bit for the job—how to sharpen—etc.

IF YOU pick up a wood-boring bit and examine it closely you will see that the head of the bit consists of a number of parts as shown in Fig. 1. Each of these does its own job when the tool is in use. The screw enters the wood first; then the spurs follow and finally the cutters. As soon as the latter strike the wood, the strain of cutting is thrown on the screw. In addition to this, the screw bears the lateral strains set up by the spurs when passing through irregularities of the grain. There is both pull and severe side thrust taken solely by the screw when the bit is passing through the wood. The spurs, it will be seen, function both as guides and cutters and determine the exact diameter of the hole. The leading edge of each spur scores the wood deeply, severing the fibers and forming a V-shaped groove, the outer side of which is vertical. The cutters merely lift the chip into the throat, from which it is carried upward by the flutes. Here is really a double-wedging action with force exerted in opposite directions. The wedging action of the cutters in lifting the chip tends to draw the bit into the wood, but the same action of the spurs tends to force it out. The pull of the screw must overcome any irregularity and continue to carry the bit forward at uniform speed.

An assortment of the various types of wood-boring or auger bits, as they are sometimes called, is shown in Fig. 3. You will note that they vary considerably. Take the first three, for example. The body of the first is simply a twisted hollow spiral, the head usually being made with a single cutter and a coarse or “fast” screw. Such a bit is used for rough, heavy work where speed is essential. It is particularly effective in green or wet wood. The fluted and solid-center bits are designed for fine work where holes must be bored smooth and to exact diameters. Both types of bits are usually furnished with either a medium or “slow” screw, Fig. 4, and have
two spurs and cutters. The characteristics of the expansive bit differ from the others in that there are no flutes along the body, and one cutter and spur are adjustable in a transverse direction so that the bit can be made to bore holes of varying diameters. The expansive bit and the gimlet bit are handy to have, even in the household tool kit, the gimlet being especially useful for boring holes in either hard or soft wood. Two of the remaining three styles shown are designed exclusively for use in a drill press, although any one of them will operate satisfactorily when turned with a brace. Two types of circular rim bits are shown, the first having what is really two continuous spurs, each extending from the cutter around the circumference to the chip slot just ahead of the cutter following. There is no screw or brad point, the circular rim acting as a guide. Although this bit bores slowly and, when driven in a drill press, must run at a comparatively slow speed, it is capable of producing the finest and most accurate work, it is supplied with either a straight shank for the drill press, or with a squared and tapered shank for the brace. The second bit of this type shown in Fig. 3 has a single cutter and a continuous saw-tooth spur. It is especially suitable for boring holes in thin wood and is supplied with a straight shank only. The fluted machine bit, Fig. 3, is similar to the metal drill except that it has two cutters two spurs, and a brad point. It is suitable
for high-speed work and is supplied with a straight shank.

One essential step to good work with a wood-boring bit is shown in Fig. 2. The jaws of the better grades of braces are curved and V-grooved and are opened and closed by tapered or beveled rings actuated by the outer threaded sleeve of the chuck. When chucking a bit it is necessary to see that the corners of the square shank are placed in the V-grooves and also that the shank is pushed into the chuck as far as it will go. To assure that the corners of the shank remain in the grooves, the jaws are opened just far enough to admit the shank. When the chuck is tightened, the bit will be straightened and held parallel with the axis of the brace. A bit in good condition will enter the wood and continue to bore with very little downward pressure on the brace, as in Fig. 7. Bits that are well cared for seldom need sharpening, but it is important that this be done properly. Fig. 8 shows how the cutters are sharpened with a special auger-bit file having one smooth or "safe" edge. The bevels on the cutting edges should be kept just as near the original form as possible. If, for example, the angle of the bevel is shortened, the chip will be curled tightly and the bit will tend to clog. Only the top of the cutter should be filed; never the bottom as this will flatten the clearance angle. When you file the cutters it's a good idea to touch up the spurs also. In filing the spurs, the important thing is to keep the original shape. With care, this can be done with the bit file as in Fig. 10. Notice particularly that the inside face of the spur is convex and that the sharp edge is continuous. It is necessary that the cutting edge be sharpened so that it will cut in either direction.

This prevents possible breakage should it be necessary to back the bit out of an unfinished hole. The smooth edge of the file should ride on the bottom of the cutter. The trick in filing is to take off an equal amount from each spur, the greatest care being taken in each filing to avoid reducing the thickness of the spur at the base. Likewise, when filing the cutter, care must be taken to round the end of the bevel at the point where it meets the solid center just above the screw. This can be done with a small round file, taking out the square corner formed by the filing of the bevel. Should this corner be allowed to
AUGER BIT FILE. WITH "SAFE" EDGES.

SHARPENING THE SPURS

bore the hole easily, the dowel acting as a guide to keep the larger bit in line with the axis of the smaller hole. If you have to carry your bits with other tools, Fig. 12 shows one way of preventing damage to the head. Select a cork or dowel to fit each bit and, as soon as you have finished using the tool, turn the screw into the cork or dowel in the manner shown.

Straightening a Bent Auger Bit

If an auger bit is bent you can straighten it as follows: Place the bit on a perfectly flat surface and roll it until the point of greatest bend clears the table a maximum distance. Carefully measure this distance, using a thickness gauge, or, if the bit is extremely out of line, the gauge and a flat piece of metal of known thickness. Make two pieces of metal or hardwood having thicknesses exactly equal to the clearance distance, and fasten them to the ends of a hardwood block which is thick enough to resist bending when placed in the vise.
WOOD CARVING

JUMBO the circus elephant is simple to whittle no matter what pose you choose. And you can use him in dozens of ways. Figs. 1 and 3 show him mounted on modern metal bases for paperweights, while Fig. 7 gives a third pose in which he serves as a simple knickknack on a desk or corner shelf. Other uses are a decoration for a cigarette box or a blotter handle, a letter opener, etc. His blocky shape requires only a little finishing—the rougher you leave him the more natural he looks. For a carving blank, pick a straight-grained, knotless piece of white pine or basswood, planed to about 1/4 in. thick. You can make him fatter if you like, using a block 1 or 1 1/4 in. thick. On one side draw 1/4-in. squares, then copy the pose you want, three of which are shown in Figs. 1, 3 and 7. Other poses are suggested in Fig. 6. Be careful to draw the elephant so that the grain runs the long way of the trunk and tail, otherwise they are likely to split or break off during carving. The details in Fig. 2 are for a vertical pose, while those in Fig. 4 are for a horizontal one. Fig. 8 shows the head carving, which is more or less common to any pose. To begin carving, cut out the blank with your penknife. Avoid making any edge a continuous curved line; it looks better as a
series of broken planes, just as your rough knife cuts would leave it. Cut a V-notch between the legs in front and back, and extend V-cuts up between the legs and body, Fig. 5. Thin down the tail and round it up. Cut a deep notch behind the head on each side. Now all that remains is the face. Outline the back of the ears with a straight-in cut about $\frac{1}{6}$ in. deep, then cut in diagonally from the body to remove a V-shaped chip. Follow this with a shallow V-notch to represent the ear itself, another V-notch and a shallow shaving inside the lobe to outline it. Mark the tusk position, then thin down the trunk, making certain that the outer surfaces are in line above and below. Accent the mouth opening, and round up the tusks, shaping the balls at their ends. Then carefully round up the head and trunk. If you are unfortunate and break off a tusk, cut both off and have a tuskless elephant. Remember to shape the little "finger" at the end of Jumbo's trunk, so he can pick up peanuts. The line of his lower lip marks the butt end of his tusks. Locate the eyes and cut in little pyramids to form them. Now cut a series of V-notches around each foot to simulate toes, and also behind any bent joints, under the jaw, etc.

To get a grayish-black elephant color, mix equal parts of brown, black and white oil paints to get a blue or brown-gray. Thin it a little more than usual, and daub it on liberally. When all areas are covered, wipe off the surplus paint with a cloth. This will give Jumbo a soft finish, with a little shine to accent the creases of his hide. Touch up the inside of his mouth, the tip of his trunk, his toes and his eyes with pink (red and white mixed). Paint his tusks white, with gilt balls. If you want a fabled white elephant, paint him a dirty, light gray all over—no elephant is pure white unless whitewashed. You can also carve a little palanquin and a mahout if you wish to put Jumbo really on parade. These can be glued on. In that case, carve V-grooves to show a headcloth and a body-cloth. Then paint them in gay colors.

You can, of course, make such an elephant as elaborate as you wish—putting in
V-notch to simulate the creases in his hide. And you can use mahogany or walnut, and finish him by oiling and waxing. If you want him larger, use 3/8 or 1/2-in. squares. Or again, lay out the designs on 1/4 or 1/4-in. wood and carve them as silhouettes for a wall frieze, picture-frame decoration, or wall panel.

Pocketknife Has Finger Shield for Carving and Whittling

When using a pocketknife to carve or whittle wood, slip a small sponge-rubber ball over the blade, as indicated, on which to rest the tip of your index finger. You'll find that this keeps the blunt edge of the blade from "cutting" into the finger, which is rather painful when the knife is used for long periods. Once a slot is made in the ball it slips on or off easily.

Small chisels for use in wood carving can be had by grinding ice picks to shape, taking care not to burn them.
WHITTLING caricatures in wood with a jackknife is a fascinating hobby that costs practically nothing and it may be a source of worth-while revenue, as small hand-carved pieces, especially of characterized animals, have become a popular fancy. Fig. 1 shows seven poses of a little stallion, which were carved from softwood. You can use white pine, sugar pine or basswood, or, if desired you can practice by carving in soap. To reproduce these poses in wood, first make full-size paper patterns of the front and profile views shown in the squared drawings in
Figs. 2, 5 and 7 to 11 inclusive. Then using carbon paper, trace each pattern on respective, adjacent faces of a squared block of wood. Place the pattern to correspond with the direction of the grain indicated in each pattern. This is important especially when carving in wood, as small parts such as the ears are otherwise likely to break off before the carving is completed. For this reason it is best to carve the ears last. The approximate shape of the horse is obtained by first sawing out the rough blank. This can be jigsawed or cut by hand, using a coping saw as shown at the top of the page. Here you will find that a V-notched board, screwed to the top of a bench to allow it to overhang the edge, will be helpful in supporting the work while sawing. Saw the profile first, then temporarily tack the waste pieces back on the block to provide a flat surface, and saw out the front view. Figs. 4 and 6 show two poses in blank, rough and finished form, with dimensions for thickness at various points. If made of wood, the figure looks best when carved rather roughly as in Fig. 3, while a smoother finish is more desirable on soap or plastics. For the beginner, Fig. 12 suggests a simplified head which is less difficult to carve than the one shown for the advanced whittler. You can finish your model with either stain or paint, applying a darker color to the hoofs, mane, tail and nostrils to give contrast to a light body.
Carved or sawed from white pine or other soft wood, these miniature birds and houses make neat ornaments for mantels, Japanese gardens or bric-a-brac shelves, and, when fitted with pointed standards, they can be pushed into the soil around potted plants to produce a realistic effect. For most purposes, skewers or candy-sucker sticks make good standards, while toothpicks can be used as perches. The designs may be varied to suit your fancy, and the birds can be copied from life or from colored pictures. The martin house shown in the circular detail is carved from solid stock and has holes drilled through it to represent doors. In most cases the birds are simply glued on their perches. Although the birds have a more realistic appearance when carved, good results can be had by sawing them out in silhouette and then posing them properly. They may also be cut from cardboard with a pair of scissors. In this case, it will be necessary to reinforce the cardboard to prevent it from warping.

Wax Protects Wood Carving

Wood carvers who find that their work often cracks due to exposing the unseasoned center portion of the wood to the air, as the work progresses, can avoid this trouble by keeping the exposed surfaces coated with wax, a waxed cloth being kept handy to rub on the work each time it is laid away.
Here is an attractive little figure that even the most inexperienced carver can make with ease. Most of the work can be done on a jigsaw to produce a blank, which then is chamfered along the edges. The legs are now rounded and tapered toward a blunt point at the hoof. In general, the wood grain should follow the line of the legs which are fragile and likely to break off if the grain runs across them. The only careful carving required is around the ears, which are rounded at the back, undercut at the base in front to give them a forward tilt, and then hollowed out at the front. Head and body shapes are practically the same in all poses, most of which are obtained by changing the angle of the neck and shape of the legs. After the figures are carved, they should be sanded carefully and finished by shellacking and waxing or varnishing.
NOTE: DOOR IS OPENED BY PULLING UP TO CLEAR BASE MOLD, THEN SWinging OUT AS AT (b). WHEN DOOR IS HORIZONTAL, IT IS PUSHED BACK TO REST ON SLIDE.

PLYWOOD OR WHITE PINE, USED FOR THE PANELS.

EDGES BLACK
RAIL 3/4"X1/2X27"

MATERIAL LIST

1 pc. 3/4 x 17 1/4 x 30 1/4 in. white pine—Top
1 pc. 3/4 x 21 3/8 x 27 in. white pine—Back
2 pcs. 3/4 x 18 x 25 1/2 in. white pine—Ends
1 pc. 3/4 x 15 1/4 x 27 in. white pine—Bottom
2 pcs. 3/4 and 1/2 x 18 1/2 x 27 in. plywood—Door
1 pc. 3/4 x 13 1/4 x 27 in. white pine—Front cleat
1 pc. 3/4 x 11 1/4 x 25 1/2 in. white pine—Back cleat
2 pcs. 3/4 x 11 3/4 x 14 1/2 in. white pine—End cleats
4 pcs. 3/4 x 1 1/2 x 14 1/2 in. white pine—or sides and guides
1 pc. 3/4 x 1 x 27 in. white pine—Top rail
9 linear feet 3/4 x 4 in. white pine—Base mold
9 linear feet 1/8 x 1 3/4 in. white pine—Top mold

Procedure:
1. Glue and square up top, back, ends and bottom pieces
2. Locate, nail and glue cleats, guides and slides in place
3. Assemble carcass and apply molding, mitering corners
4. Enlarge and trace door scroll. Saw opening and sand edges
5. Glue up two part door and fit in opening
6. Putty nail holes, sand and apply undercoat and enamel
for Your Fireplace

Detail of Front of Bellows

Half Pattern for Leather

Note: All edges of leather and boot are reinforced with a strip of leather 3/8" wide, secured with brass-head tacks 3/4" apart.

End View Showing How Leather Is Carried Across Handles

Leather Boot

Block glued to base

Brass Nozzle

Nail holes

1/8" Flange Soldered

1" Hole 1/2" Dia., 1/2" thick

Reversed View of Block

Soft Leather Valve-Flap

Leather Strap to Hang, 1/2" width

This groove for air vent, matches the one cut in block

Opening Cut on Jig Saw

Sandpaper wrapped on 1/4" dowel. The edges are smoothed and rounded with sandpaper.
WOOD CHISEL RACKS
Chisels Missing in Rack Noticed at a Glance

Accommodating a set of six or eight chisels, this rack will not only protect and keep them in neat order, but it will enable you to see at a glance if any are missing. The chisels rest edgewise in narrow slots cut in a 2-in. pine block, the length, width and depth of each slot being cut to suit the individual chisels. The base and sides of the rack are cut from ½-in. stock, and two flat brass hooks keep the hinged cover closed. If desired, the rack can be screwed solidly to a shelf near the workbench.

Rack for Wood-Turning Chisels Permits Easy Removal
I find this open rack for wood-turning chisels much more satisfactory than clip hangers, slotted boards or other devices. A tool can be removed or replaced in an instant without getting caught on anything. The base is a ¾ x 5 x 17-in. board supported on shelf brackets. The tool handles rest in large holes bored part way through the wood, these holes being continued through the wood with a smaller drill to permit easy removal of the shavings. The tool blades fit in open cuts in a 1½-in. strip nailed to a backboard. The tools are tilted back sufficiently to prevent them from falling out,
CHOICE pieces of fancy woods that are ideal for small turnings, such as tool handles and similar projects, are available right in your own back yard. Wood from an apple or cherry tree finishes beautifully and is well suited to turnings and the carving of small novelties. Large stems of some rose bushes, being of tough and close-grain wood, are excellent for tool handles. Catalpa wood, while relatively soft, has an interesting grain.

Often, the dead branches of a bush or tree will be dry enough to use right away but in other cases the wood will have to be seasoned before working it to shape. This is done by stripping the bark from the branches and then storing them overhead in a garage or dry basement. Paint both ends of each piece with asphaltum to prevent checking. After a few months of air-drying, the pieces will be ready for use.

The spatula pictured in the photos at the right is an example of what can be done with home-grown wood. Here, wood from the stem of a rose bush was used to form the handle. First the wooden parts are planed flat on one side and cut roughly to size. Then they are clamped to each side of the spatula tang and all three parts drilled at one time for three flat-headed rivets. Holes in the wooden parts are countersunk slightly to take the rivetheads and the burrs on the peened ends. A file is used to dress the rivets flush with the wood and, finally, the handle is worked down to the desired shape with sandpaper. A coat of stain followed by two coats of clear lacquer and rubbed to a high polish brings out the beauty of the wood.
HOW does the expert produce the soft
glow of finely finished wood? How
does he give his work that unmistakable
professional appearance? He will tell you
that there are over twenty operations in a
top-rate job of hand-rubbed finishing, and
that most of these steps have to do with
careful and intelligent attention to small
details, simple things that one is apt to
overlook. The other operations have to do
with applying the right materials in the
proper sequence.

Sanding: In starting with any article
not previously finished, you first go over
the piece thoroughly with fine steel wool,
then No. 7-0 sandpaper, Fig. 1. A helpful
trick is to use a large piece of old inner
tubing or other flexible pad, wrapping the
sandpaper around it to reach into crevices
more easily. Clean up all tool marks. Dust
off with a dusting brush as in Fig. 2, or
with compressed air if available. Sand and
re-sand. A thorough sanding job is the
beginning of a good finish.

Staining: First apply a thin glue sizing,
allow it to dry and sand lightly. Watersoluble aniline dyes which are best for
staining mahogany, for example, have been
transferred to anhydrous solvents. Water
stains of this type are non-grain-raising,
have a clear color and tone and do not clog
the pores because they are completely
dissolved. The water stain will accentuate
the beauty of the grain more than most oil
stains. Walnut and mahogany will respond
beautifully to this treatment but when you
use other woods and endeavor to give them a walnut or mahogany finish, you are obliged to consider the wood, rather than the color of the finish. If, for instance, you are using one of the Philippine woods which are often miscalled Philippine "mahogany," you are not dealing with mahogany at all. It is said to require extra work and care in the finishing. Some finishers say that it requires excessive sanding to lay the grain properly, absorbs excessive amounts of finishing materials, and remains lifeless. To imitate mahogany, select birch. Using the proper stains and procedure sequence certain pieces of this wood will finish in a remarkably close simulation. Likewise, selected cherry can be finished to match walnut.

Spray the stain very lightly on a thoroughly wet surface—unless the directions with the stain preparation advise differently. Or, use a sponge or large brush to apply thinly, but delicately. Then allow to dry, scrutinize the result, and re-apply, if necessary. Wood, such as mahogany, darkens with age. It may be a light salmon pink when freshly cut, and change to a sherry with time. Your job, therefore, is to achieve this sherry tone immediately. Naturally dark stains are positively out. The object is to bring out grain by intensifying it with successive light applications of stain, Fig. 3.

First Sealer Coat: Allow the stain to dry for four hours or more. The sealer coat, Fig. 4, consists of alcohol, 4 parts, to four-pound-cut white shellac, 1 part, or, use lacquer sealer, 1 part, to lacquer reducer, 2 parts. The sealer coat brings out the highlights and makes it more transparent. If possible, spray it on as in Fig. 8.

Filler: Allow sealer coat to dry at least four hours. Sand thoroughly, dust thoroughly. A secret is to use filler, regardless of the character of the wood. Experts do. The filler for the job should be of inert material and it should be a shade darker than the stain, Fig. 5. Add pigment as desired—for brown mahogany, use Van Dyke brown or burnt umber; for red mahogany, use burnt sienna and Van Dyke brown; reduce with naphtha and brush on with the grain. In 4 to 8 min., wipe across the grain with circular motion, using burlap. On turned parts proceed as in Fig. 7. Wipe until completely clean. Dry overnight, preferably in a warm room. Do not rush—the old wood masters never did.

Second Sealer Coat: Spray on as in Fig. 8 if possible. Make this coat slightly heavier—a little less reducer. Dry at least one hour. Sand with No. 7-0 sandpaper and don't forget to remove dust.

Glazing: To achieve an antique finish,
with certain parts highlighted at the corners of flat surface, around grooves, legs, and knobs—apply glazing stain, rubbing it off except in the parts just mentioned. Allow to dry overnight. Or, for an antique look on the piece, use a special antique stain in the staining process. The dealer in decorators' or wood finishers' supplies will tell you which.

Finish Coats: Clear lacquers are generally preferred by professional finishers. Good lacquers are quick-drying, resist water, heat, alcohol, scratches and are easily washed with soap and water and polished. The new synthetic varnishes which have a Bakelite base, are excellent, too. Also, shellac with a polishing-off wax will give you good service. But most satisfactory as a rule, is good lacquer. Three coats, with 48 hrs. between each coat, and sanding between each—is the usual procedure. Use an air brush for lacquer, if possible. Apply a gloss lacquer for the first two coats, then a flat type for the third to give extra body. Lacquer all over—front, back, inside. For a less dull effect, use a soft cloth or felt dipped in rubbing oil, Fig. 11, then in American beauty grows in direct proportion to the amount of rubbing you do.

French Polishing: This is an interesting antique finish in which there is a maximum of hand rubbing. Sandpaper, stain, etc., omit lacquering and instead apply raw linseed oil. Let it dry 24 hours. Sandpaper again using No. 7-0 paper. Dust. Dissolve French polish or shellac gum with alcohol to a very thin liquid. Apply with pad, using circular motion, Figs. 9 and 10, adding just a drop of raw linseed oil, now and then. When the surface of the article has been gone over in small sections, this way, about four times, set it aside and allow to dry 48 hours. Repeat the process at intervals of 48 hours as long as you like, except that the final rub-down ought to take place six days after the preceding, just to give the second to the last coat time to season. The beauty grows with each polishing.
SEVERAL common materials are used for top coats, including shellac, wax, lacquer, varnish and synthetics. All are good finishes. Generally, if you are using a spray gun, nothing beats a lacquer system for quality furniture work. If you are swinging a brush, you will do best with varnish or brushing lacquer.

The varnish finish: Varnishing should be done in a clean place made as dust-free as possible. The temperature should be 70 to 80 degrees—remember that varnish is like oil or grease and flows best when warm. A flow test on glass, as in the top drawing, is a worthwhile check. Poor flow can be corrected by thinning the varnish, or, if simply a case of too low a temperature, by heating in a pan of warm water.

The first coat of varnish goes on better and sticks tighter if thinned with gum turpentine, 1 part, to varnish, 4 to 6 parts. Your brush should be a good quality varnish brush, 1½ to 2 in. wide. Start on surfaces you see the least; finish with what you see the most. So far as practical, all large surfaces should be worked in a horizontal position. Dip your brush a little more than one third the length of the bristles and then set the varnish in the brush by tapping lightly against the edge of the container. Apply the varnish with a deliberate, smooth stroke. On a table top, brushing should be from center to ends, as shown. After the surface is covered, tip it off with light brush strokes running from one end to the other. On a framed panel, cut in the molding first, as shown, then cross-brush and finally tip off with the grain. Cross-brushing is a useful technique to obtain a level coat, especially on a vertical surface; it is not needed when the surface is horizontal. A film of varnish or other clear finish is almost impossible to see and it is important to have strong lights suitably placed to make the wet surface glare in your eyes.

Let the first coat dry 12 to 24 hrs. and then sand lightly with 6/0 garnet to knock off the gloss. Be careful not to sand through the finish, especially at the edges. Apply the second coat at can consistency. Give this second coat plenty of drying time—never less than 24 hrs.
VARNISH

VARNISH is composed of a gum or resin in a suitable carrying agent or vehicle, commonly linseed or tung oil. Solvent oils—usually turpentine—are added to make the varnish thin and fluid. Many different kinds of varnishes are made, the list below covering products of special interest to the wood finisher.

RUBBING AND POLISHING—Rubbing-and-polishing varnish is designed specifically for furniture finishing. It contains a smaller amount of oil than other varnishes and is generally described as a short-oil varnish. Short-oil varnishes sand and polish with a minimum of gumming. Drying time is usually 24 to 48 hours. Four-hour-drying products are also available.

PALE RUBBING AND POLISHING—Same as above but very clear for light-color finishes.

POLISHING VARNISH—Shorter oil content than regular. Polishes nicely but tends to be brittle. Use only as top coat over regular rubbing varnish.

TABLE TOP—Hard and tough, proof against heat, cold and alcohol. Usually a synthetic. Four-hour dry.

SPAR—Long-oil, dark, slow-drying, moderate gloss. The long-oil content makes this varnish tough and elastic. Used most for exterior work; sometimes called marine varnish. Dries hard in 12 to 24 hrs.

RUBBED EFFECT—Dries to a satin finish resembling hand-rubbed work. Best used for top coat only; use regular gloss varnish for undercoats.

VARNISH STAIN—General-purpose interior varnish tinted with dye colors or pigments. All wood colors. Stains and varnishes in one coat. Good for pine floors; seldom used on quality furniture except as quick refinish.

SANDING SEALER—A product designed for a first coating over stain or filler. Usually a brushing lacquer or a shellac base sealer, either of which can be used under any kind of varnish.

SHELLAC

SHELLAC is a gum produced by the lac bug of India. The dried flakes are mixed with alcohol, the average store product being a 4-lb. cut (4 lbs. shellac per gallon of alcohol). Dries out of dust in about 10 min.; 2 hrs. to recoat. Only fresh shellac should be used, as mixtures over six months old tend to gum and do not dry properly.

ORANGE—The natural shellac color. Suitable for all dark woods.

WHITE—Bleached flakes produce a clear, transparent solution. This is the product most used for floors and furniture work.

SHELLAC MIXING LACQUER—See under LACQUERS.

WATERPROOF SHELLAC—A modified shellac which is completely waterproof. Most products of this type are closer to being brushing lacquers than shellac.

DEWAXED SHELLAC—A superfine bleached and dewaxed shellac commonly used as the basis for various kinds of French varnish.

LACQUER

LACQUER commonly indicates a product containing nitrocellulose, although the term is used for a wide variety of quick-drying materials. The nitrocellulose—cotton fibers treated with nitric and sulphuric acids—is blended with suitable solvents, gums and pigments.

CLEAR GLOSS—A clear lacquer which dries with a glossy finish. Thinned with lacquer thinner. Must be sprayed; dries too quickly for brushing. Dries dust-free in a few minutes; 1 to 2 hrs. to recoat.

CLEAR FLAT—Same as above but dries flat. Can be intermixed with a similar-brand glass lacquer.

RUBBED EFFECT—Semigloss.

BRUSHING—A slow-drying lacquer suitable for application with a soft brush. Should be thinned with a slow-drying thinner for best results; often sold at brushing consistency.

RUBBING AND POLISHING—Made especially for rubbing and polishing. Generally, simply the better grades of lacquer. Usually water-white. Also called piano-finishing lacquer.

WATER WHITE—Perfectly clear, water-white lacquer. Should be used for all bland finishes, also as a protective coating for art metals.

SHELLAC MIXING—A lacquer which mixes with shellac, giving increased resistance to water and better sanding qualities.

BLEACHING—Bleaching lacquer is simply a water-white, thin lacquer, the kind of finish which is required on extremely light-color woods.

BAR TOP—Indicates proof against alcohol, heat, cold, etc. Used for table and bar tops.

NONLIFTING—Nonlifting lacquers are intended for refinishing over varnish. The solvent commonly used has high alcohol content; if reduction is required a nonlifting (high alcohol) thinner should be used.

SANDING SEALER—Contains a sanding agent which permits clean, easy sanding. One hour to sand.

BLONDING—A thin white lacquer used to obtain blond tone. Can be made by adding white lacquer, 1 part, to clear lacquer, 4 or 5 parts.

SYNTHETICS

SYNTHETICS are finishing materials using manmade resins. Most of the fast-drying varnish and enamel you buy today is synthetic. Most synthetics are sold simply as varnish or paint; some are identified by trade name only.

PLYWOOD SEALER—Especially good for equalizing hard and soft areas in fir and pine. Clear amber; also in white for blond effects.

PENETRATING FLOOR SEALER—A penetrating finish for floors but good for simple finish on furniture. Apply to bare wood only; brush, mop or spray. Low luster. Usually steel woolled and then waxed.

CATALYST FINISHES—Hard, tough finishes which are proof against steam, alcohol, etc. Used for table tops. Requires catalyst (hardener) which is mixed with synthetic before use. One to four hours to dry.
Sealer system with varnish: A first coat of varnish as just described is sound practice, but it takes 12 to 24 hrs. to dry. Faster work can be done with a first coat of a special product known as sanding sealer. This dries to recoat in about an hour. It brushes easily, has good build and—best of all—contains a sanding agent which permits clean, powdery sanding without gumming.

The shellac finish: This is an old standby, favored by craftsmen because it is easy to apply and dries fast. White (clear) shellac is used for most work and is a must for blond finishes. Orange shellac is used for dark wood. Intermixing of colors is practical. Deeper colors are sometimes useful in toning a finish where the stain does not seem exactly right. These transparent toners are easily made by mixing alcohol-soluble powder stain with shellac and then adding to the shellac as required. The same trick can also be done with varnish and lacquer finishes, using oil-soluble and lacquer-soluble powder stains.

The main fault of shellac is that it goes stale. About one year after it is made, a chemical change has advanced to the stage where the shellac is so gummy it simply will not dry. For this reason, shellac should be purchased in small cans as needed, from a store where there is good turnover. Shellac is also thirsty; you should avoid warm, muggy days for your shellac work. You can do much to remedy these faults of shellac by buying a can of shellac-mixing lacquer. Mix the two together and you have a crisp-drying product which combines the excellent sealing action of shellac with the water resistance and the hardness of lacquer.

To apply shellac, use a soft varnish brush. Since the material dries quickly, it is necessary to work rapidly, using long running strokes—one stroke to apply, one stroke to tip off. The use of thin coats makes brushing much easier; never use heavier than 3-lb. cut. If you brush excessively, the shellac will pile up in ridges and show laps. Shellac is rubbed down between coats with fine sandpaper or steel wool. The final coat can be steel-wooled or rubbed with 2/0 pumice and rubbing oil. Shellac is not waterproof and should not be water-rubbed.

Wax finish: For a simple, fast finish, wax has long been a favorite. It has a pleasing luster and is readily renewed. The first step in this finish is to apply at least one coat of thin shellac, varnish or lacquer. After this has dried, it is lightly steel-wooled and is then coated with paste wax applied in an even film with a cloth. Allow 10 min. to an hour for the wax to dry and then rub briskly with a soft cloth. Let dry for at least an hour and then repeat. Two coats of wax make a good finish.

Brushing lacquer finish: This is a good type of finish which deserves more use. Most beginners avoid brushing lacquer, perhaps having tried at some time to brush spraying lacquer or heavy lacquer enamel. You just can’t do that because the material in the brush dries before it flows and in no time at all you are trying to paint with a snowball. A practical brushing lacquer is very thin—almost like water. It brushes as easily as shellac. “Brushing” is really the wrong term to use—you “lay” on a brushing lacquer or other fast-drying finish.
Keep the brush wet, lay the finish on with one stroke, and you will get a smooth finish. The usual back-and-forth brushing action is especially taboo on the second coat because this movement will stir up the coat already applied. Two coats make a satisfactory finish.

Sprayed lacquer finish: This is the best and fastest way to finish furniture. The rapid drying of lacquer solves the problem of dust in the finish, and this in itself is enough to justify its use. The weakness of the lacquer finish is that it is thin. Some people like this thin finish. It is appropriate for wall paneling, especially when the wood is of a medium to light color. On dark woods, it may give a “starved” look, lacking the illusion of depth which is one of the characteristics of varnish. Good body can, of course, be built up in a lacquer finish, but it takes more coats. Lacquer can be applied in straight coats. More often a sanding sealer is used for the first coat since this is equal in build to two coats of lacquer. Sanding between coats is confined to a mere scuffing with 6/0 paper to knock off dirt nibs.

Penetrating finish: This finish was developed for use on floors, the idea being to obtain a finish which is in the wood rather than on it. Since there is no heavy surface film, there is nothing to wear or scratch. Penetrating finish is made in both wax-resin and resin-oil bases. Both must be applied to bare wood only. The wax type cannot be coated with any other type of material; the resin-oil base can be topped with varnish at any time. The chief fault of penetrating finish is that the finish lacks body, often giving the appearance of no finish at all. The luster can be improved by waxing. A wax-base product is preferred for furniture. Application is made to the bare or stained wood with brush or cloth pad. No filler is required since the finish provides its own filler. After drying one hour or until tacky, the excess is rubbed off with 2/0 steel wool. A second coat is applied and allowed to dry 4 hrs., or more and is then rubbed down with 2/0 or 3/0 steel wool. Polishing with a soft cloth will bring up a soft luster and the polish can be renewed at any time by rubbing with a cloth. These specific directions apply to a specific product; use the application methods recommended by the manufacturer of an individual product.

Catalyst finishes: Catalyst finishes embrace a group of liquid-plastic materials which are cured by means of a catalyst or hardening agent added to the material just before application. Finishes of this kind are usually sold under a coined trade name, a typical product being Phenalin. Characteristic features are extreme hardness and “proof” against almost anything, including boiling water, alcohol, lacquer thinner and even varnish remover. A finish of this kind is often useful on bar and table tops and other surfaces which are abused in various ways.

The amount of catalyst varies with different products. Phenalin takes 1½ oz. per quart. This specific product is best sprayed but can be brushed; it dries enough in 1 hr. for the first coat to be sanded. The second coat requires 24 hrs. drying time before rubbing. All finishes in this group have poor adhesion to undercoats and should be applied to bare or stained wood only—do
not use any kind of sealer or pigmented stain. Rubbing can be done with rubbing compound or with waterproof paper, using grits 360 and 400 in succession with rubbing oil or water lubricant. Many catalyst finishes, especially the urea-alkyls, require baking in order to properly cure the surface film. Phenolic resins used with a catalyst usually are air-dry-or-bake type. On small objects, baking equipment need not be elaborate since it can be done quite nicely with one or two infrared heat lamps.

Salad-bowl finish: Another useful industrial finish which is now available in the craft field is a penetrating finish for salad bowls and other woodenware. Salad-bowl finishes are made in one and two-coat systems. In a single coat, the feature of the finish is deep penetration of a wax-resin solution. A two-coat system is a continuation of this film with a special type of lacquer. The general idea is that the wood is impregnated and also coated with a tough, waterproof film. The salad-bowl finish is a lacquer formula but can be brushed. A warm room is required—especially if you are spraying—to keep the wax content from going out of solution. This finish has a waxy feel and is excellent for cigarette boxes and other items touched by the hands.

Finishing fir plywood: Fir plywood is a difficult wood to finish with ordinary materials because of the wild grain and the fact that the wood tends to fuzz and face-check. These faults can be overcome to a considerable extent with the use of phenolic resin primer, commonly sold as plywood sealer or marketed under a trade name (Rez, Firzite, etc.). The sealer is also useful for pine and fir other than plywood. A full wet coat should be applied to bare wood, using brush, spray or cloth mop. Let dry a few minutes and then wipe clean with a soft cloth. The surface is dry for handling almost immediately but should dry overnight for top coats of varnish, shellac or lacquer. If a dark stained finish is desired, the preferable technique is to apply pigment oil stain over the sealer. The clear sealer can be mixed with colors-in-oil to make a stain for this purpose. Clear sealer can also be mixed with white oil paint to make a filler for limed effects or a wipe-off stain for blonded finishes. A ready-mixed white sealer of this type (white Firzite) can be purchased at most paint stores. It should be noted that the terms white sealer, white-pigment wiping stain, and white toner indicate the same general technique of staining a piece of wood with a semitransparent surface coating. The white sealer is primarily for fir plywood, where its sealing and penetrating action is more important than the fact it also contains white pigment which colors the wood. White-pigment wiping stain is purely a stain, and its only purpose is to color the wood; it has very little penetration. A white toner commonly means a lacquer product; it is definitely a surface coating with no penetration of the wood.
After rubbing abrasive powder into a glass tumbler about two thirds full of water and allow to settle. Then pour off most of the water and mix to a creamy paste.
Use a felt rubbing pad for polishing flat surfaces with the grain and make sure that the pad is clean.

Turnings can be polished with a clean cloth charged with abrasive cream. Use only light polishing pressure.

Above, paint small carvings with abrasive cream and polish with a toothbrush. Below, some finishers apply wax with a cloth pad to get a uniform coating.

Above, be careful not to cut through finish when sanding or rubbing corners and edges. Below, some finishers prefer to apply paste wax with a steel-wool pad.
prefer rubbing oil instead of water. In either case, mix the powder and liquid to a creamy paste and pour or brush it on the surface to be rubbed, Fig. 3. In rubbing with the abrasive-charged felt pad, use a long sweeping stroke, Fig. 4, each stroke overlapping the previous one about half the width of the pad. Always rub with the grain on straight-grained woods and the long way of the surface on panels or tops having a burled or butt grainings. Be especially careful when working near the edge, Fig. 7, allowing the pad to overlap the edge on only one or two strokes at the most. Otherwise the abrasive may cut through the finish and expose a narrow line of bare wood. Check the progress of the work occasionally by wiping a spot clear of abrasive and examining it carefully in a good light. An easy way to determine the uniformity of the surface is to look across it obliquely. Small areas that are still rough or untouched are easily spotted in this way. When the surface is uniformly flat and feels smooth to the touch of a finger, it is ready for final polishing.

Turned legs, pressed or carved moldings and both overlay and relief carvings require a different treatment. Turnings are rubbed by means of an abrasive-charged muslin cloth as in Fig. 5, special care being taken not to rub the finish off the high places. Small carvings are rubbed with an old toothbrush after painting the surface with the abrasive cream. On large carvings a worn scrubbing brush is often used to advantage. In finishing carvings be careful to brush as much as possible lengthwise of the high places, not across them. This often will require brushing in several directions. As a rule, carvings and the short-radius portions of turnings are left in a dull gloss finish. When a lathe turning is the project, rubbing can be done with the work turning at slow speed, Fig. 15.

In polishing a finer abrasive is used. Also, it should be noted that if nothing but water is added to the 3F pumice slush, Fig. 13, continued rubbing will grind the abrasive finer and finer. A thorough rub with pumice will produce a medium-low sheen. Leave the spent rubbing slush on the work. Then make a final rub with clean cotton waste.

For a polished finish, let the work stand overnight and then continue the rubbing process, using rottenstone and rubbing oil or water. Rottenstone does not actually cut like pumice but it will bring up a polish quickly if the work has been pumice-rubbed absolutely level. After rubbing, clean thoroughly with a damp rag.

Lacquer presents a harder surface than varnish and is often rubbed with wet-or-dry abrasive papers which cut faster than pumice. Even if you prefer the soft action of pumice, a quick cut-down with 8/0 paper lubricated with water or oil, Fig. 10, will greatly lessen the labor of pumice rubbing. The paper should be soaked a few minutes in water, Fig. 12, as the backing is weak and brittle when dry. A satisfactory satin finish, can be obtained with 8/0 paper alone, but can be followed by rottenstone or rubbing compound for higher gloss if desired.

Rubbing compounds are available in a variety of types and grits for coarse or fine polishing. In all types of rubbing, they are preferred by many finishers to the older pumice and rottenstone abrasives. Compounds are supplied in paste form and may be used with or without a lubricant, depending on type.

Within the scope of rubbing technique, French polishing is worth considering.
Wet-or-dry abrasive paper should be soaked in water for flexibility and strength. Right, in the final stages of pumice rubbing, add water to the spent slush to reduce cutting action.

Don't try this with homemade mixtures of shellac and alcohol—buy a good ready-made product and you will be surprised how easily and quickly you can give any varnish or lacquer surface a high gloss. First, give the finish a good rub with 8/0 paper and water. Dry thoroughly. Pour a little of the polish on a soft cloth or gauze pad, and apply to the work with a circular motion, Fig. 14. Add more polish as needed. Make a final wipe with long sweeping strokes with the grain.

Frenching with a ready-made polish is an easy and fast way to build a high polish. Left, turned projects can be rubbed or polished while revolving in the lathe.
WOOD FINISHING

OPEN-GRAIN WOOD 1

Brushing or spraying, single-stain system for oak, walnut, mahogany, etc.

1. Brush or spray NGR stain of desired color. Dry 20-30 min.
2. Brush or spray wash coat of lacquer or white shellac. Dry 10 min.
4. Fill with paste wood filler of desired color. Dry 30 min. to 24 hrs. depending on product used.
5. Brush or spray wet coat of sanding sealer. One hr. dry.
7. Second coat of sealer. Sand as before.
8. Spray two coats of clear gloss lacquer, or, brush one coat of R & P varnish. Lacquer should dry overnight; varnish at least 24 hrs. before rubbing.
9. Rub to satin finish with rubbing compound applied with burlap pad.

NOTES: Rubbing can be eliminated by using final top coat of rubbed-effect varnish or lacquer. Operation No. 2 can be omitted if desired.

OPEN-GRAIN WOOD 2

Brushing or spraying, double-stain system.

1. NGR stain. Dry 20 min.
2. Paste wood filler. Dry as required.
3. First coat sanding sealer. One hr. dry.
5. Second coat of sealer. Dry and sand.
6. Brush or spray wet coat of pigment wiping stain. Color should be a little darker than NGR. Let stand 2 to 10 min. as needed, then wipe with soft cloth, wiping clean or shading as desired. Dry 30 min.
7. Top coats of R&P varnish or lacquer.

NOTES: Double staining is recommended for off-color wood, also for shaded and antiqued effects. Shading can also be done—No. 6—by spraying NGR stain or shading stain; the wiping stain is best for brush system.

CLOSE-GRAIN WOOD 3

Lacquer system for birch, maple, etc.

2. Spray lacquer sanding sealer. Dry 1 hr.
4. One to three coats of clear gloss lacquer, scuff-sanding between with 6/0 garnet. Let final coat dry overnight.
5. Rub (see rubbing schedules).

CLOSE-GRAIN WOOD 4

Brushing or spraying, double stain.

1. Brush or spray NGR stain. Dry 30 min. Sand lightly with 6/0.
2. Brush or spray pigment wiping stain of same color. Wipe clean or shade as desired. Dry 30 min.
3. Brush or spray sanding sealer. Dry 1 hr.
4. Sand 6/0 garnet, dry, Dust off.
5. Two coats of lacquer or one coat of R&P varnish.
6. Rub.

NOTES: For quality work, more coats of top material can be used to get a thicker film for thorough rubbing.

CLOSE-GRAIN WOOD 5

Spray only, double-stain system.

2. Thin same stain 1 part to 3 parts naphtha. Spray-shade the work. Do not wipe. Dry 30 min.
3. Finish with sealer and top coats.

NOTES: This is similar to No. 4 except change in stain and application.

SANDING Specifications

BARE WOOD—No. 1/2 or 1/0 for first sanding; 2/0 or 3/0 for second sanding; 5/0 or 6/0 for final. Best abrasive is garnet, open coated. Always use a sanding block of felt or rubber to build a level surface.

UNDERCOATS—Scuff lightly with 6/0 garnet finishing paper, dry. Back with hand only—don’t use a sanding block.

WET SANDING—Waterproof garnet or silicon carbide. See rubbing schedules. Always use a felt or rubber backing block. Don’t wet-sand one-coat work.

MACHINE SANDING—Belt: No. 1 for rough; 1/0 for finish; 3/0 or 4/0 for fine finish. Oscillating and magnetic: use same grits as for hand sanding.
CLOSE-GRAIN WOOD

Brush or spray, double stain. This gives a nice tone on maple, poplar, birch, pine, etc.

1. Brush or spray pigment wiping stain of desired color. Let dry until it starts to flat, then wipe with rag. Dry 30 min.
2. Brush or spray sanding sealer. Dry 1 hr.
5. Pigment wiping stain, same as No. 1.
6. Varnish or lacquer top coats as desired.

NOTES: The second staining operation can be omitted if desired.

UNIFORMING SCHEDULE

For finishing open and close-grain wood in same piece.

1. Spray or brush NGR stain of desired color. Dry 30 min.
2. Apply paste wood filler to all open-grain wood and to end grain only of the close-grain wood. Wipe and let dry.
3. Brush or spray pigment wiping stain of matching color on close-grain wood only. Dry 30 min.
4. Brush or spray sanding sealer. Let dry 1 hr.
5. Sand 6/0 garnet.
6. Repeat 4 and 5.
7. Spray or brush pigment wiping stain over the entire piece, wiping and blending with rag as needed for color value. Dry 30 min.
8. Alternate. Spray shading stain or diluted wiping stain to uniform the wood. Do not wipe. Dry 30 min.
9. Top coats of varnish or lacquer.

UNIFORMING SCHEDULE

1. Apply NGR stain to light sapwood. Wipe with cloth dampened with alcohol to get color match. Dry 10 min.
2. Spray NGR stain but not wet; spray lightly on dark wood, heavy on light wood. Dry 30 min.
3. Spray lacquer wash coat over all.
5. Fill all open-grain wood with paste wood filler.
6. Reduce same filler, 1 part filler to 2 parts naphtha. Apply to close-grain wood. Wipe off and let dry.
7. Spray wet coat sanding sealer. Dry 1 hr.
8. Optional. If further color toning or shading is required, spray shading stain or thin pigment wiping stain.

SURFACE COLORING SYSTEM

Spray system for select white wood.

1. Spray uniform coat of blond lacquer.
2. Spray two coats of water-white lacquer.

NOTES: This can be used for other colors—gray, cream, green, etc. A tan or gray may be used on dark woods.

SURFACE COLORING SYSTEM

Brush system for maple or birch.

1. Brush light-color pigment wiping stain (blond, platinum, pale birch, beachwood, wheat, etc.). Allow to dry until tacky and then wipe clean with soft cloth. Dry 30 min. to 2 hrs. as required.
2. Top coats of varnish.
3. Alternate: One coat of 2 lb. cut white shellac, followed by coat of paste wax.

NOTES: After the wood is colored, any top finish can be used. Water-white top coats are preferable since they retain pure tone of stain.

STAIN SYSTEM

Attractive light tones can be obtained on select white wood by stain. However, the wood cannot be made any lighter than its natural color.

1. Spray or brush diluted NGR stain of desired color.

MIX TRIX for Blending

SPRAYING—Add white lacquer, 1 part, to clear lacquer, 5 parts. Dilute with thinner. Spray an even coat; do not wipe.

BRUSHING—Use flattening oil or glazing liquid as a base. Add small amount of fluid or tube oil color of desired color (zinc oxide for white). Wipe off when tacky.

BRUSHING—Mix boiled linseed oil, 1 part, turpentine, 1 part and japan drier, ½ part. Add white or other oil color to suit.

BRUSHING—Thin any white undercoat paint with equal volume of turpentine. Add spoonful of linseed oil per pint.

TINTS—Use regular white wiping stain. Tint with tube or fluid oil colors as desired.
Yellow, pink and green tones are practical. Dry 30 min.
2. Finish with Nos. 1, 2, 3 or 4.

BLEACH SYSTEM (open-grain wood) 12
A two-solution commercial bleach gives positive light tones on most woods and provides the proper ground-
for attractive blond finishes.
1. Mix one part of No. 1 bleach with two parts No. 2.
 Apply with rubber sponge. Bleaching is complete in
 1 hr. but work should dry 12 hrs.
3. Apply paste wood filler. Wipe and dry.
4. Finish with sealer; sand; top coats; rub (see Sched-
 ule No. 1).
NOTES: Color in this system is obtained entirely from the
filler. Use natural filler for lightest finish; tint natural
filler with oil color or oil stain for other colors.

BLEACH SYSTEM (open-grain wood) 13
1. Bleach the wood.
2. Brush or spray diluted NGR stain. This can be pink,
 light green, yellow, etc.
3. Wash coat of shellac. Dry 30 min.
4. Apply filler. Use natural or tint with oil color to ap-
 proximate color of stain.
5. Top coats.
NOTES: Color in this system is obtained from the stain.
 Always use a wash coat, No. 3, to prevent excessive
darkening from filler oils.

BLEACH SYSTEM (close-grain wood) 14
1. Bleach the wood. Let dry.
3. Brush or spray desired color wiping stain, such as
 wheat, toast, suntan, platinum, champagne, etc.
 Let stand until stain begins to flat, then wipe clean
 with soft rag.
4. Brush or spray sanding sealer, preferably water-
 white. Dry 1 hr.
6. Spray two coats water-white lacquer or brush one
 coat clear synthetic.
7. Rub.
NOTES: After bleaching the wood, it can be finished by
following any schedule for close-grain wood. Above
is patterned after Schedule No. 6 with omission of sec-
ond stain coat.

<table>
<thead>
<tr>
<th>Reductions for STANDARD SHELLAC CUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPERATION</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>WASH COAT</td>
</tr>
<tr>
<td>FIRST COAT</td>
</tr>
<tr>
<td>SECOND COAT</td>
</tr>
<tr>
<td>THIRD COAT</td>
</tr>
<tr>
<td>GENERAL USE</td>
</tr>
</tbody>
</table>

Alcohol and shellac proportions are given in liquid parts. Example: You have 4-lb. cut shellac and want
1-lb. for first coat. From table, it can be seen this requires 2 parts alcohol and 1 part of 4-lb. cut shellac.

STRAIGHT SHELLAC 15
1. Brush or spray 1-lb. cut white shellac. Dry 30 min.
 and scuff-sand with 6/0 garnet.
2. Second shellac coat, 2-lb. cut. Dry 2-3 hrs. and sand
 with 6/0 garnet.
3. Final shellac coat, 2 or 3-lb. cut. Allow 3 hrs. dry.
NOTES: For two-coat work, omit step 1.

SHELLAC AND WAX 16
1. Apply one or two coats of shellac according to
 Schedule No. 15.
2. Place a small quantity of paste wax inside double
 thickness of cheesecloth. Apply even coat. Dry 10-
 15 min.
3. Rub briskly with clean cheesecloth pad. Use rotary
 motion; finish with long strokes. Dry 1 hr. or more.
4. Repeat 2 and 3.
NOTES: Wax finish can also be used over lacquer or var-
nish. For a dull finish, wipe final wax coat with damp
rag.

PENETRATING FLOOR SEALER 17
A simple in-the-wood finish of maximum
durability. Low gloss.
1. Apply wet coat of penetrating floor sealer with
 brush or cloth. Let dry 15 min. and wipe off excess.
 Let dry 1 hr.
2. Buff the surface with No. 0 steel wool.
3. Apply second coat. Allow 10 min. for penetration.
 Wipe off excess. Dry overnight.
4. Buff with No. 0 steel wool.
5. Wax.
NOTES: Penetrating floor sealers are available in resin
and resin-wax types. Exact application procedure var-
ties—follow can directions. Most clear finishes can be
colored with oil stain; some products are supplied
ready-mixed in a variety of colors.

[Image of a person painting]
Urea-Alkyd (catalyst finish)

An extremely hard and durable finish for table and bar tops.

1. Stain with NGR stain if color is desired. Do not use pigmented stain as the adhesion is not good on undercoats of any kind.
2. Mix urea-alkyd synthetic with required amount of catalyst (about 1½ oz. per qt.), and apply with brush or spray. Dry 1 hr.
5. Rub and polish.

NOTES: Some urea-alkyd finishes require baking. The above is for air-dry-or-bake type. Mixed solution must be used within 4 hrs.

Salad-Bowl Finish

A wax-resin finish for salad bowls and other turned woodenware which must resist water and various vegetable oils.

1. Spray impregnating salad-bowl sealer on wood. Dry 1 hr.
2. Scuff-sand, 6/0 garnet.
3. Spray one or two coats of salad-bowl lacquer.

NOTES: This is a lacquer system and must be sputtered. A brushing top coat is also available which makes a satisfactory finish in two coats without the impregnating sealer.

Oil Finish

A fast oil finish for guns.

1. De-whisker the wood by wiping with a damp cloth and drying quickly. An electric heater is ideal for this purpose. After the wood is dry, cut the whiskers with 2/0 steel wool.
2. Fill with natural paste wood filler, mixed and wiped the same as for finishing walnut furniture. Dry 24 hrs.
3. Apply a first coat of boiled linseed oil, 4 parts, and spar varnish, 1 part. Rub with hand or cloth until dry. Let stand 48 hrs.
4. Apply boiled linseed oil and rub in as much as the wood is able to absorb. Polish with soft cloth until the wood is dry. Let stand a day or longer and repeat oiling until the finish is satisfactory.

NOTES: Use of filler and first coat of varnish gives this kind of oil finish a quick build; as few as four coats of oil will bring up a good polish.

Limed Oak

A popular novelty finish for oak or chestnut showing white pores on a gray ground.

1. Bleach the wood and stain with NGR silver-gray stain. On select white oak, bleaching can be omitted.
2. Alternate: Spray a coat of thin gray lacquer on the wood. This is an easier method than bleaching and equally good.
3. Wash coat of shellac or lacquer. This is required only if the wood has been stained; lacquer toner provides its own seal.
4. Finish with top coats of clear shellac, water-white lacquer or water-white synthetic.
5. Wax (optional).

NOTES: Be sure work is sanded perfectly smooth as even fine scratches will pick up the filler.

Ebony on Apple, Pear or Maple

1. Stain with hot, concentrated black NGR stain. Let dry and repeat.
2. Scuff-sand with 6/0 garnet.
3. One or two top coats of any clear finishing material.

Waxes for Wax Finishing

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard</td>
<td>Carnauba wax, 1 lb., ceresine wax, 1 lb., turpentine, 1 pt. Shred the waxes into a can and put the can in boiling water over a flame. After the wax melts, remove from heat and add the turpentine, which should be warmed in hot water.</td>
</tr>
<tr>
<td>Medium</td>
<td>White or yellow beeswax, 1 lb., turpentine, ½ pt. Mix by heating as above, or, shread wax in turpentine and let stand overnight.</td>
</tr>
<tr>
<td>Colored</td>
<td>Mix the turpentine in the above formulas with a small amount of the desired color in Japan. Burnt umber or Van Dyke brown are satisfactory for browns; Venetian red makes a good red wax. Dry color can be used for ready-mixed wax; dry burnt umber makes a good brown wax, using about a teaspoonful of color per lb. of wax.</td>
</tr>
<tr>
<td>Antique</td>
<td>To 1 pt. of liquid wax, add about 1 oz. powdered rotenstone or dry sienna. Shred and melt paraffin wax. Thin as desired with a 50-50 mix of turpentine and naphtha. Color with a little dry zinc white.</td>
</tr>
</tbody>
</table>
3. Alternate: Finish with black polishing wax (see Schedule 16).

NOTES: See also Schedule No. 30.

CEDAR (Aromatic Red Cedar) 24

1. Spray 2-lb. cut pure white shellac. Dry 2 hrs.
2. Rub down with 2/0 steel wool.
3. Second coat of shellac, 3-lb. cut.
4. Sand 6/0 garnet or 3/0 steel wool.
5. Top coat of clear gloss varnish.

NOTES: Schedule No. 15 can also be used. Shellac is essential as a first coat to seal the oil in cedar. When used for closets, box interiors, etc., the wood is not finished.

BEACHWOOD FIR 25

A subdued-grain finish for Douglas fir, white or yellow pine and similar woods.

1. Brush or spray clear plywood sealer. Let dry 4 hrs.
2. Scuff-sand with 6/0 garnet.
4. Top coats of varnish or lacquer.

NOTES: Both the sealer and pigmented stain help to subdue the grain. After coat of plywood sealer, the wood can be finished with any schedule for close-grain woods. If NGR stain is to be used, reduce the priming sealer coat with 25 percent turpentine.

OLD-WORLD WALNUT 26

An open-pore finish suitable for walnut, mahogany or oak.

1. Stain the wood medium to dark brown, using pigment oil stain. Let stain dry 5 min. and then dry brush, wiping brush occasionally on cheesecloth to remove excess stain. Then, with clean cheesecloth pad, wipe centers of panels clean, blending stain to darken at edges. Let dry overnight. Do not sand.
2. Brush or spray sanding sealer. Dry 1 hr.
4. Top coat of lacquer or varnish.
5. Rub with 3/0 steel wool.
6. Wax with dark mineral wax.

NOTES: Feature of the above schedule is that all shading and color is obtained by dry-brushing and wiping the single coat of pigment stain. A wash coat of shellac or plywood sealer can be used as a primer if desired and will facilitate smooth blending of stain coat. See also double-stain Schedule No. 6.

PICKLED PINE 27

1. Stain with NGR gray stain for pine.
2. Brush or spray sanding sealer or 2-lb. cut white shellac.
3. Brush over-all coat of white pigment wiping stain. This can be wiped clean or streak-glazed with a dry brush. Another treatment is to wipe the stain across the grain, producing a smoked effect.
4. Brush or spray 2-lb. cut white shellac or clear synthetic.
5. Optional. Rub down with 3/0 steel wool and apply coat of liquid wax.

NOTES: The true pickled finish is a gray finish with an overcast of white, like the tone acquired by pickle vats. The finest work is done by first bleaching the wood; gray stain for pine then produces an even color.

LACQUER OR SYNTHETIC ENAMEL 28

1. Spray mist-coat lacquer enamel.
2. Sand back to bare wood with 6/0 garnet.
3. Apply two or more coats of enamel, scuff-sanding between with 6/0.

ENAMEL WITH UNDERCOAT 29

1. Wash coat of shellac. Dry 20 min.
2. Alternate: Mop, brush or spray plywood sealer thinned 1 part turpentine to 3 parts sealer. Dry 1 hr.
4. Brush or spray undercoater. Spray lightly or brush out well. Dry as required.
5. Apply full wet coat of undercoater.

Patching METHODS

Defects which cannot be sanded out should be filled with plastic wood, cold-water putty or stick shellac. The putty is a powder which is mixed with water. Stick shellac is melted on a knife and the hot mixture run into the crack; some finishers burn-in with a soldering iron. In all cases, it is best to mask the defect with tape to avoid getting filler material on surrounding wood. Smooth the filler material level with the protecting tape, then strip the tape and sand to bare wood. Color matching for a clear finish may be done with the material itself, but the simplest system is to spot in the defect with pigment oil stain or shading stain applied with a small pencil brush.
5. Patch. Use water putty, lacquer putty, thickened undercoater or other suitable patching material.
7. Second enamel coat.
8. Optional, spray only. Finish coat of water-white clear lacquer, or regular clear with a small amount of enamel added.

NOTES: This schedule applies generally to lacquer, synthetic or oil enamel. Undercoater in Step 4 may be tinted with the enamel color if desired, using 25 to 50 percent enamel. One coat of white undercoater and one coat of enamel will often make a satisfactory finish.

EBONY BLACK
A combined stain and enamel schedule for a permanent gloss black.
1. Stain with black NGR stain.
2. Fill pores with black paste wood filler. The filler used for red mahogany is satisfactory.
3. Two coats of lacquer.
4. Two coats of water-white lacquer.
5. Rub and polish to high gloss.

NOTES: On close-grain wood, the filling operation is not required.

SATIN
1. Rub with FF pumicite and water, using felt pad. Flush with water.
2. Rub with rottenstone and water or rottenstone and rubbing oil.
3. Wax or furniture polish, if desired.

NOTES: When finish consists of sealer, first varnish coat and second varnish coat, the second coat can be rubbed with 320-grit wet-or-dry paper with water lubricant. The idea is to build a level surface before the top coat is applied.

SATIN
1. Rub with 280 or 320-grit wet-or-dry paper with soapy water lubricant. Soap can also be applied to paper to prevent gumming. Use felt backing block to build level surface.
2. Wipe surface with cloth and continue rubbing with 3/0 or 4/0 steel wool.
3. Apply coat of liquid wax and rub dry.

NOTES: This schedule is especially good for lacquer rubbing, either clear or enamel.

SATIN-TO-POLISH
2. Clean up and wax.

NOTES: This produces a satin-to-polish finish depending on the grade of rubbing compound used. This is as fast as a steel wool rub and has more gloss. About 10 strokes bring up a satiny polish.

HIGH POLISH
1. Follow any satin schedule. Let dry 12 to 24 hrs.
2. Rub with polishing oil.
3. Remove excess oil with rag dampened with alcohol. Polish with dry cloth.

HIGH POLISH
1. Follow any satin schedule.
2. Rub with a polishing compound or automobile polish.

NOTES: Numerous rubbing and polishing compounds are available.

FRENCH POLISH (high gloss)
1. Apply any finish with lacquer, shellac, enamel or varnish.
3. Dilute ready-mixed French polish with about 25 percent of special solvent provided. Apply mixture to cloth pad and flatten pad on palm of hand. Pad the work with circular strokes and then finish with the grain.

NOTES: Use only improved French polish such as Qualo-sole, which requires no lubricant.

Rubbing MATERIALS

RUBBING FELT—Soft, pressed felt, 3 x 5 in., and at least 1/8 in. thick. Several smaller pieces.

ABRASIVE PAPER—6/0 (220-grit), 8/0 (280) and 9/0 (320) wet-or-dry silicon carbide.

PUMICE—No. 1 for coarse rubbing. Nos. FF or FFF for fine rubbing.

ROTENSTONE—For fine rubbing.

RUBBING OIL—Lubricant for rubbing. Purchased ready-mixed. Porophin oil, crude petroleum or light motor oil thinned with benzine can be used.

NAPHTHA—For cleaning up rubbing slush.

POLISHING OIL—Purchased ready-mixed. A home-made mix can be made with half-and-half olive oil and alcohol. Standard household furniture polishes can be used.

RUBBING COMPOUND—Ready-mixed paste or liquid abrasive. Various grades of fineness.

WHITE SOAP—Any white soap. Used to keep fine abrasive paper from loading.

LACQUER POLISH—For cleaning up rubbing compound haze. A large number of ready-mixed products available. Automobile polish can be used.

ALCOHOL—Used to spirit-off polishing oil. Add water as desired to reduce strength.
Blond Finishes

You can glorify your furniture in the beautiful and modern blond finishes with either a spray gun or a brush. The table below gives typical blond schedules.

<table>
<thead>
<tr>
<th>BLOND-FINISH SCHEDULES</th>
<th>APPLICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honeytone maple or birch</td>
<td>Tone with blond toner, using 1 part white lacquer to 4 parts clear, flat lacquer. Finish with water-white lacquer.</td>
</tr>
<tr>
<td>Pickled pine</td>
<td>Bleach. Stain with gray stain for pine. Finish with water-white lacquer or clear varnish.</td>
</tr>
<tr>
<td>Limed oak</td>
<td>Bleach. Seal. Fill pores with white paste wood filler. Finish with water-white lacquer.</td>
</tr>
<tr>
<td>Harvest-wheat mahogany</td>
<td>Bleaching will give required wheat color. Fill with natural filler lightly tinted with raw-sienna color in oil. Finish with lacquer.</td>
</tr>
<tr>
<td>Tweed mahogany</td>
<td>Bleach. Seal. Fill pores with red paste wood filler. Finish with water-white lacquer or clear varnish.</td>
</tr>
<tr>
<td>Heather mahogany</td>
<td>Bleach. Seal. Fill pores with white paste wood filler. Finish with water-white lacquer or clear varnish.</td>
</tr>
</tbody>
</table>
WOOD FINISHING

With the increased use of small spray-painting outfits, and the many new types of stains, lacquers and synthetics readily available, the craftsman can duplicate the finest finishes seen on manufactured furniture. Beautiful blond tones in, ambered walnut, honeytone maple and harvest-wheat mahogany, interesting novelty effects such as limed oak, bone white and pickled pine, as well as smart contemporary finishes such as antique maple and natural birch, all are within his scope. The man with the brush is not out of the picture either, as most of these finishes can be applied nearly as well by hand brushing.

Bleaching: One of the basic processes for many of the newer blond finishes is bleaching, which means the removal of the natural wood color with various chemical solutions. Of several different types of bleaches, the two-solution bleach consisting of concentrated hydrogen peroxide and an alkaline solution is generally considered most effective—it will produce nearly white tones on walnut and mahogany with one application. Application of the two-solution bleach can be done by applying the solutions consecutively or premixing them immediately before using. Most finishers prefer the premix method. The mixed solution is corrosive and should be worked only from a glass or porcelain container; the finisher should be wearing rubber gloves and a rubber
Wheat Color on Birch

Apron, Fig. 1. Splashes on the skin or clothing will do no harm if washed off immediately with water. The bleaching action will be complete in about an hour, and can be repeated if desired. Application of No. 2 solution alone in a second coat is effective. A light sponging with water after the bleach has become surface-dry will assure removal of any residue which might affect the finish. The work itself should dry for at least 24 hours before proceeding with the finish.

The bleach will raise the grain of the wood so that light sanding is needed to restore the surface. Many finishers make use of a trick also practiced in the application of water stains. The work is first wet with water or a thin glue sizing coat and then sanded smooth. When dry it will show less grain-raising when the bleach is applied. The idea, of course, is that too much sanding on a bleached surface may expose dark wood. In order to determine the grain-raising tendency and also to check the color of the wood, it is advisable to make a test strip, Fig. 2, before going ahead with actual work.

Toning: Toning, Fig. 4, is the second basic process. This calls for the spraying of a semitransparent undercoat to lighten the wood rather than the more expensive and longer bleaching schedule. It is not too successful on dark woods such as walnut or mahogany, but very good on naturally light-colored woods such as birch and maple. Toners can be purchased or made.

For spray application a good toner can be made by adding white lacquer, 1 part, to clear flat lacquer, 4 or 5 parts, as in Fig. 3. This mixture is sprayed directly on the bare wood. The semitransparent nature of the toner does not obscure the grain, but at the same time it makes the wood much lighter. On oak and mahogany, the toner should be made with tan lacquer instead of white. In fact, there is no limitation on color effects. If you are brushing, any pigment wiping stain can be used, applying by brush and wiping off with a clean rag after about 5 min. setting time. Some products sold for this purpose come in white only, but can be tinted any desired color with tube or fluid oil colors. Pigment stains applied by clean wiping do not materially lighten the wood but are excellent for wheat, suntan, platinum and other light colors applied to light-color wood. Brush blending a heavier coat is often used to lighten dark streaks in the wood.

Honeytone maple: This attractive effect of blond wood, shown in Fig. 5, can be worked on white maple or birch by toning. Spray a thin coat of white toner directly on the bare wood after sanding. Finish with two coats of water-white lacquer. This is almost as clear as water and does not have the amber color of ordinary clear lacquer or varnish. It should be used on all extremely light finishes. Water-white synthetics substitute perfectly if you are brushing, and, as previously mentioned, a wipe-off stain can be substituted for the sprayed lacquer toner. Some concepts of "honeytone" run to a stronger yellow, and this effect can be obtained by tinting the white lacquer or the white wiping stain with a small amount of light or medium chrome-yellow oil color.

It is worth noting that most of the modern named finishes—wheat, champagne, suntan, desert dust, honeytone, platinum, etc.—are derived from a color similarity. Actually there is no fixed standard "honeytone," and what you buy from one supplier may be a different shade than another. Also, it is worth repeating that there is nothing to keep the finisher from striking out on his own—all it takes is a touch of oil color and you can run the rainbow.

Ambered walnut: The light amber finish so popular on walnut can only be obtained by using a commercial bleaching solution. Toning, if carried to a stage of light coloring, will completely kill the grain of the wood, giving the piece a painted appearance. Start by applying the bleach. Let it dry on the wood overnight and then sand lightly with 6/0 sandpaper. Dust the work, and stain it with a non-grain-raising, quick-drying stain. This should be light amber color and should be
thinned as much as needed with the required thinner until the tone is just a shade darker than the bleached color of the wood. Seal the stain with a wash coat of shellac to prevent further darkening of the wood by the oil in the filler. Apply natural (transparent) filler. Let dry thoroughly. Finish the schedule by applying two or three coats of clear gloss lacquer, rubbing the last coat to a satin finish.

Limed oak: To produce limed oak, Fig. 6, bleach the work with a commercial bleach. Stain or leave the wood in its natural bleached color as you desire. Apply a wash coat of water-white lacquer. Fill the pores of the wood with white filler. This can be obtained ready-mixed or made by adding zinc-white oil color to natural filler. Use only water-white lacquer as a top coat over this finish—ordinary clear lacquer will spoil the color.

Silver oak: This is similar to limed oak but is obtained by the toning method. Mix light gray lacquer, 1 part, with lacquer thinner, 3 parts, and spray directly on the bare wood until an even color is obtained. Fill the pores of the wood with white filler, Fig. 8, and finish with water-white lacquer. Many novel effects can be obtained in this manner by using different toners and fillers. Midnight oak, Fig. 7, is simply a thin black lacquer for the ground color, filled with white paste filler.

Other blond finishes: All other blond finishes feature the same application of the basic processes already described. Mahogany, bleached and filled with white filler, is known as “heather mahogany.” When filled with red filler (made by adding red oil color to natural filler) the delightful pink tone is called “tweed.” Bleached mahogany
with a natural filler is one of the most attractive in the blond mahogany group and is variously known as "harvest-wheat mahogany," "bronze mahogany," etc. The popular wheat color is also used extensively on birch and maple, the color being obtained by a lacquer toner or with wheat-color pigment wiping stain. Champagne, Fig. 9, is a pleasing light brown with a pinkish cast, readily worked on maple or birch with pigment wiping stain or toner. The exact schedule for champagne as used by Heywood-Wakefield calls for staining with pigment stain; spray a coat of water-white sealer; sand; spray coat of clear synthetic (Dulux); rub and wax. Apart from the fact that commercial concerns commonly use dip methods for pigment staining and make extensive use of baking ovens for rapid drying, you can duplicate this and other finishes exactly with ordinary methods. A double-stain coat with brush or spray is about equal to the single-dip application.

Bone white: Bone white, Figs. 10, 11 and 12, is a popular enamel finish. Start by giving the work a coat of bone-white enamel. This is purchased ready-mixed and is simply an off-tone shade of white which the finisher can mix himself, if desired, by adding a little black or brown lacquer to white lacquer. Next, spray or brush a coat of warm brown wiping stain. Wiping stain is ordinary oil pigment stain, but somewhat more concentrated. Before the stain dries, start to wipe it off with a soft rag. Do a rather thorough job, leaving just a trace of stain in recesses and corners. When the stain is dry, finish with top coats of clear lacquer.

Antique maple: The popular color for maple pieces in Early American styling is a red-orange, usually sold under the label, "antique maple," Fig. 13. After staining, the work should be coated with orange shellac or clear lacquer. Staining alone seldom gives the mellow aged appearance so essentially a part of this finish, making it necessary to apply a second coat of stain to obtain highlights. This second stain coat is a warm brown wiping stain, the same as used in the bone-white finish. It is sprayed or brushed on the work and then wiped off rather cleanly. Even on areas wiped perfectly clean with a dry cloth, a portion of the stain will remain on the wood to give a shaded effect to the finish. Extra clean highlights are obtained by wiping the stain with a rag moistened with benzine. After the wiping stain has dried, the work can be finished with clear lacquer or varnish.
SPINDLE turning between centers is the groundwork for all wood lathe operations. The first step in making a spindle turning is centering the stock. The latter should be square, or nearly so, and the center at either end located and marked by any of the methods shown in Figs. 1 to 9 inclusive. After centering, the spur center is driven into one end of the work with a mallet, as shown in Fig. 10. Never drive the work onto the spur center in the lathe. Since the spurs of the center may not be exactly alike, nick one of them with a file and make a pencil mark opposite the nicked spur as in Fig. 11. Thus marked, the work may be removed from the lathe at any time and accurately re-centered when it is again mounted for turning. Mounting the work between centers done by advancing the tailstock cup ce-
into the work while the latter is being turned by hand. When the stock binds, the tailstock is backed off about one-quarter turn and locked. Apply a few drops of oil, as in Fig. 12, to prevent the wood from burning the cup center. Many turners use tallow or wax for lubricant, since this does not stain the wood. Fig. 13 shows the relative position of the tool rest with the axis of the work. As the square is turned into round, the rest is moved up by stages. About 1/4 in. above the axis and the same distance from the surface, is a fair rule to follow, although there are variations, of course.

The first turning operation is the "roughing cut," made with the gouge. Figs. 16 and 19 show the proper position—the bevel should be tangent to the work, and the tool rolled on its side. Figs. 14 and 17 show the wrong position, resulting in a scraping action. The position shown in Figs. 15 and 18 permits the chisel to cut, but lack
of clearance prevents the easy, shearing cut possible with the correct position, Fig. 16. The final smoothing of the cylinder after roughing is done with the large skew chisel, the correct position being shown in Fig. 20, with the cut moving toward the right. By reversing the position of the chisel, the cut can be carried equally well to the left. The edge of the chisel should be tangent to the work, Fig. 21, and should contact the surface at the point indicated. The secret of successful smoothing with the skew lies in using the bevel of the chisel as a fulcrum, Fig. 22. If the handle is too low, the edge will not cut, Fig. 23, while if the handle is too high, Fig. 24, the edge will not be supported and will have a tendency to draw into the wood.

Next, the various diameters of the turning are set off with the parting tool, Fig. 25. The calipers are set slightly oversize, and are held against the revolving work until they slip over the stock remaining at the bottom of the groove. This is a scraping cut, which is the safest. A better action is obtained if the lower edge of the chisel is kept approximately tangent to the cylinder, Fig. 29, but the tool is a bit more tricky to handle.

Following the parting tool, Figs. 26, 27, and 28 picture the cutting of a shoulder. In the first operation, the waste is cleared away with the gouge, Figs. 26 and 30. The heel of the skew is then used to smooth the new surface squarely into the shoulder, Figs. 27 and 31, while the toe of the skew is used to dress the shoulder smooth and to exact size, Figs. 28 and 32. When using the skew in this last position, the cutting edge should at all times point toward the center of the work, Fig. 32. A still more important point in making this cut is shown in Fig. 33. Here the line “B” is the cutting edge of the chisel; line “A” is the bevel. Notice particularly that the bevel A is exactly parallel with the cut surface, while the cutting edge is slightly turned away. The same general technique used in cutting a shoulder can be used for clearance cuts or for making vee grooves, as in Fig. 34. Vee grooves can also be made with the heel of the skew, as in Fig. 37. From this position, the handle of the chisel is raised to hinge the cutting edge into the wood. The same rule about not engaging the full cutting edge applies. Slightly exaggerated, Fig. 35 shows how the edge of the chisel is almost, but not quite, parallel with the surface being cut. This is correct. Fig. 36 shows the edge of the chisel exactly parallel with the cut surface, which is incorrect. When the edge is thus engaged, a
"run" invariably results. Keep in mind that a point, either toe or heel, cannot run. It is only when the whole edge or a considerable part of it is engaged, as in Fig. 36, that runs occur.

Figs. 38 to 42 inclusive show successive stages in cutting a bead. The center of the depression should be marked first by running in with the toe of the skew, as shown in Figs. 38 and 39. Starting the cut from the position shown in Fig. 40, the chisel is slowly rolled to the left and simultaneously the handle is raised to keep the bevel in contact with the wood. The essential point in cutting a bead is shown in Fig. 43—the bevel of the chisel should be tangent to the work. In this position, the chisel cannot run.

Quite often, a bead must be cut from a square portion of the turning. When this is done, the work is first nicked with the point of the skew, Fig. 44. After nicking, the round portion of the turning can be roughed out without any danger of splintering the square part, Fig. 45. After the round portion is turned down to a true cylinder—this is easily checked by placing the chisel flat on the revolving work to detect any "hammering" action, as shown in Fig. 46—the bead itself can be cut. This can be done in the same manner as previously described, although many turners prefer the simpler scraping operation with the toe of the skew, Fig. 47.

Figs. 51 and 52 show the start of the difficult cove cut, and Figs. 53 and 54 show the slight rolling action of the gouge as the cut progresses. Pencil marks are first made to indicate the edges of the cut and the excess wood inside the marks is removed with the gouge, using a scraping position,
sume the same relative position throughout the operation.

When the basic cuts have been mastered the turner can do any ordinary spindle turning. The essential points are illustrated in Figs. 55 to 60 inclusive. The first step after smoothing the cylinder is to mark off the dimensions. This is best done with a layout board. A layout board is simply a thin piece of wood on which is drawn a full-size half section of the proposed turning. Placing the board against the cylinder, the turner

Fig. 48. The entire cut can, of course, be made in this manner, the practice being quite common even among experienced turners. To proceed with the rolling cut, the first essential point is that the gouge must point to the exact center of the work. Whether the tool rest is low, Fig. 49, or high, Fig. 50, this same rule applies. The reason for this is simple: The exact point of the gouge which is thus engaged cannot run. The second essential point is shown in Fig. 51—the bevel of the gouge must form an exact right angle to the surface of the work. From this position the gouge is rolled into the cove, making one-half of the cut in one operation, and the opposite side of the cut in a second operation which is a reverse of the first. It's important that the tool handle be swung through an arc simultaneously, so that the bevel will as-

can quickly mark the various points along the turning, as in Fig. 55. Many turners place the board flat on the tool rest, Fig. 56, and mark the work while it is revolving. After marking the required lengths, the diameters are picked off, as shown in Fig. 57, and the caliper setting is then used in making the initial parting-tool cuts, and then the various forming cuts are made.
As all lathe work cannot be turned between centers, but must be mounted on a faceplate or chuck, the correct method of working is far more important than skill in the handling of the turning tools. The turning of a ball is a typical example. Where the ball is over 2 in. in diameter, the method shown in Figs. 1 to 7 inclusive should be used. Stock for the job is first squared up, and is then marked on two adjacent sides with a circle slightly larger than the size of the required ball. The shape thus marked is cut out on a band saw, the pieces from the first cut being bradded back in position to permit making the second cut. The resulting shape is roughly blackened with a soft pencil along the center area of each of the four sides, after which the work is mounted in the lathe between centers. Using first a gouge and then a skew, the wood is turned down until the pencil mark shows as a
faint line, as in Fig. 4. Next, carefully capiler and turn the narrow neck at the dead-center end to \(\frac{3}{4}\)-in. diameter. The ball can now be cut off at the live end, as in Fig. 5. A wood chuck is made up, and is mounted on the single-screw center, or, better, fitted by means of a set screw to the end of the lathe spindle. The chuck has a \(\frac{3}{4}\)-in. hole in it to take the stub of the ball, as can be seen in Fig. 6. Sanding with a piece of paper held between the ball and a \(\frac{3}{4}\)-in. plywood template of the same diameter as the ball, as shown in Fig. 7, will bring it to an exact round, after which it is cut off carefully. Where several balls are to be made, they can be turned in line, as shown in Fig. 8. Notice that a spear-point tool is worked directly over a wooden template to obtain the proper shape at the center of each ball. After the center is perfect, the balls can be cut apart and finished in a cup chuck, shown in Figs. 33, 35 and 36.

Figs. 9 to 11 show various cuts used in faceplate turning. Differing from spindle turning, practically all cutting on faceplate work is done by scraping. The chisel must be in line with the center of the work, especially when the face of the disk is being worked. Fig. 9 shows one of the most common methods of surfacing, in which a skew chisel is advanced across the face of the work. Surfacing is also done with the edge of a spear-point chisel, as shown in Fig. 10,
back of the frame is cut first, this being done while the work is mounted on a faceplate, as shown in Fig. 16. The rim is then used to hold the work on a spindle chuck, as shown in Figs. 17 and 18.

The turning of napkin rings and similar hollow cylinders offers another example in the use of the spindle chuck. As shown in Fig. 19, the napkin ring is first finished on the outside and bored halfway through, this being done while the work is mounted on the single-screw center. A suitable spindle chuck is then made up to fit tightly inside the ring, as shown in Fig. 20. Mounted on this spindle chuck, the opposite end of the ring can be turned out, Fig. 21.

Boxes and similar turnings whose bottoms are too thin to take screws must be mounted on backing blocks. In the example, shown in

and also can be done with a flat-nose chisel.

A job that involves both faceplate and chuck work is the turning of a ring, as shown in Figs. 12 to 15. The work is first fastened to a suitable faceplate to permit the outer portion of the ring to be turned, after which the partly finished ring is put in a recessed chuck. This must be turned carefully so that the ring will be a "press fit." A parting tool now is used to cut away the center of the ring. Templates should be used frequently to check the progress of the work. Turned picture frames and trays are worked in much the same manner as a ring. The recess in the
best done with a flat-nose chisel, Fig. 29. The lid is now mounted on the box and the outside of both lid and box turned, Fig. 30. Keep the work on the faceplate until it is polished or otherwise finished, then sand the joint between the box and the lid lightly, and remove from the backing block.

Chucks, other than those already mentioned, are frequently useful. A common type is shown in Fig. 31 and in 32. Fig. 34 shows a similar chuck, but without the expansive feature. The hole can be tapered or straight as desired. This kind of chuck is ideal for turning wood goblets and similar work, as shown in Fig. 33.

Figs. 35 and 36 show a cup chuck, which is often used in turning balls. Figs. 37 and 38 show a useful chuck for turning disks and other work having a central hole. Its construction and use are apparent from the sketch and photo.

Fig. 22, the stock for the body of the box is glued to a soft-wood backing block, Fig. 24. A piece of paper must be placed between the joints so that the work can be separated easily from the block. The lid for the box is mounted in the same manner on a second block, this, in turn, being fastened to a suitable lathe faceplate.

The inside of the lid is turned first, Fig. 23, after which the inside of the box is turned out, Fig. 27. If you have a slide rest, by all means use it for deep boring like this. The center can be turned out equally well, however, with a spear-point chisel or skew, as shown in Fig. 26. In either case, it is usually simpler to start the hole by drilling, as in Fig. 25. The inside of both lid and box completed, the lid can be tested on the box, as indicated in Fig. 28. A tight fit is essential. The lid can now be separated from its backing block. This is
WOOD LATHES

IF YOU have only occasional use for a wood-turning lathe in your home shop, here's a way to make a serviceable one at minimum cost. Two ordinary bench-type polishing heads form the head and tail stocks. As dimensioned below, the lathe takes 22 in. between centers and provides a 12-in. swing over the bed. The distance between centers can be increased to 29 in., the standard table-leg length, by making the angle-iron bed members 40½ in. long. The bed members are bolted to hardwood mounting pads, the bolts passing lengthwise through the spacing blocks and through the flanges of each angle. A pipe spacer is used at the center to maintain alignment of the bed members. No changes in the polishing heads are necessary except drilling and tapping a hole in one bearing of the tailstock to provide for a spindle locking screw, and filing a flat on one threaded end of the each spindle so that the setscrews in the centers do not damage the spindle threads. Both the headstock and tailstock are attached to the bed with bolts and wing nuts, the bolts passing through flat plates which bear against the angle-iron flanges. A faceplate, handwheel and tool rest are easily improvised.
A deep tray built into the top of this unusual lathe bench catches 90 percent of the chips from the average wood-turning operations. Lathe bed is hinged at the headstock end so that it can be propped up and accumulated shavings swept into a chute from which they are deposited in a box located beneath the bench. There also is a drawer for lathe tools and the lower shelf provides a solid base for the motor. Actual dimensions of the bench are, of course, determined by the size of your lathe.
WOOD LATHES

Self-contained unit has four-speed V-belt drive, rigid iron bed, and a quick-acting tailstock

With this lathe you can swing a disk 12 in. in diameter on the headstock or turn down a full-length table leg between centers. The headstock spindle, Fig. 1, is supported on auto connecting rods bolted to a short length of channel which forms the base and is bolted to the bed. A hardwood spacer between the rods holds the whole thing rigid. The 1/2-in. spindle runs in Ford spindle-bolt bushings which are pressed into the upper ends of the connecting rods and then reamed to give the spindle a free-running fit. The spindle also carries two ball thrust bearings, one on each side of a four-step V-pulley. Polished flat washers are used to take out the end play, if any. The inner end of the spindle should project about 3/4 in. to take a hollow-sleeve spur center of the type which locks in place with a headless set screw. This and the drive pulley, also the thrust bearings, can be purchased at little cost. Faceplates are also available.

The bed is simply two channels of the size given in Fig. 3. They are bolted together with spacers cut from pipe, the latter of such length as to leave the top flanges of the channels exactly 1 in. apart when the bolts are drawn tight. Now, the stand consists of two end members joined directly to the bed as in Fig. 3, and to a lower shelf as in Fig. 4. The motor shelf is assembled from three pieces of 1 1/2-in. angle as in Fig. 3. It's a good idea to make up the stand first, then cut these pieces to suit the motor and V-belt you are to use. Fig. 2 shows a trick in fitting angle iron that should be used in building this stand, as it results in a rigid joint. After the pieces are cut to required length, file one end of the angle which meets the corner of the second angle, in this case the leg, to a contour which allows it to fit snugly. Then clamp the pieces to-
gather and drill the hole for the stove bolt. If one piece is tapped as shown, use the tap drill first, then ream the outer hole with a body drill for the bolt. Or drill through with the body drill and tighten with a nut and lock washer on the stove bolt. Either way will do. Note that the hardwood shelf is braced to the foot, Figs. 3 and 4, and that the shelf rests on an angle-iron rail to which it is bolted. Foot pieces of 1½-in. angle are bolted to the ends of the legs. A machine bolt or cap screw is put through near the ends of each foot piece and held in any position with two nuts, one on each side of one leg of the angle as shown. This gives adjustment for leveling the lathe on any floor.

Finally, the tailstock and toolrest. Fig. 6 suggests a method of making the latter. You can purchase this item ready-made also. Figs. 5 and 7 show clearly how the tailstock is made. As you will see, it is very similar to the headstock. The quill is turned out of 1-in. cold-rolled steel shafting, the ends being shouldered back the length and diameter of the upper connecting-rod bearings leaving a center section 4½ in. long. The quill is counterbored as shown and a portion tapped to take the threaded section of the spindle. The locking device consists of a cam rolling in slots cut in the channel-iron base as in Fig. 7 and actuated by a ball handle. The cam is made by filing slots in a piece of ¾-in. shafting. These slots cause the shaft to move eccentrically, lifting the U-bolt and the plate which bind against the flanges of the bed and tighten the tailstock at any position.

A ¼-hp. motor of 1,750 r.p.m. will furnish sufficient power for ordinary work. By using matched 4-step cone pulleys on motor and headstock you will not have to shift the motor to change the spindle speed. By making up hinged motor rails out of strips of hardwood or ¼-in. flat iron it will be much easier to shift the belt when changing speeds. Hinged motor rails can also be purchased ready-made.
In small workshops, a woodworking lathe can be mounted on a baseboard, hinged to the workbench, to swing up against the wall when not in use, thus leaving the bench clear for other work. Cleats are nailed or screwed to the baseboard to raise it above the hinges, and angle iron, cut and bent as shown in the detail, joins the motor platform to the baseboard. The mounted lathe is held solidly by a bolt that runs through the baseboard and into the workbench where it is held by a wing nut. When raised, the lathe is held against the wall by a length of flat iron bolted to a hinge and slotted to fit over the bolt as shown in the circular detail.
WOOD SELECTING

WARPING is one of the home craftsman’s biggest headaches. After spending considerable time, money and pains-taking care in producing a fine piece of furniture, it is disheartening and a keen disappointment to have it later warp and shrink and come apart. But shrinkage and warpage can be held to a minimum by proper conditioning of the wood and by maintaining a close check of its moisture content at the time it is fabricated.

How wood warps: Wood shrinks and warps in definite relation to the direction of the annual rings, and shrinkage is about twice as great when the direction is parallel with the rings as when it is across them. This basic principle is illustrated in Fig. 4. Quartersawed (edge-grain) lumber shrinks the least because the heaviest shrinkage takes place across the narrow dimension of the board. Flat-cut boards have the greatest shrinkage across their wide dimension where it is more noticeable. Also note, Fig. 3, that flat-cut boards tend to cup away from the heart side. This is an important point and should be remembered in joinery.

Detecting warp: Any irregularity caused by warp should be removed because a board that is warped even slightly will continue to twist no matter how it is used. Cup warp, Fig. 8, is detected with a straightedge placed across the board, whereas twist or wind is determined with a pair of winding sticks, Fig. 1, or by placing a straightedge from corner to corner, as shown in Fig. 7. Both methods will reveal two high corners if twist is present, and consequently planing should be done diagonally from high corner to high corner.

Conditioning: Conditioning means seasoning the wood to the proper moisture content (M.C.) to correspond

A TYPICAL FLAT-CUT BOARD — NOTE CUP WARP AWAY FROM HEART SIDE

STRAIGHTEDGE IN DIAGONAL POSITION WILL TEST BOARD FOR TWIST

Can You Pick the Best Table Top?

TO SCORE 100 IN THIS TEST, YOU SHOULD BE ABLE TO TELL PROBABLE WARPING ACTION OF ALL BOARDS SHOWN. END GRAIN IS KEY TO SELECTION. YOU WILL KNOW WHY IF YOU READ THE STORY

ANNUAL RINGS
HEART SIDE
FLAT-CUT BOARDS ALWAYS CUP AWAY FROM HEART

GREATEST SHRINKAGE IS IN DIRECTION OF ANNUAL RINGS
QUARTERSAWED BOARDS ARE THE MOST STABLE

IF END GRAIN IS BETWEEN 45° AND 90°, THE BOARD IS GRADED QUARTERSAWED OR EDGE-GRAIN

GRAIN LESS THAN 45° IS GRADED AS FLAT-CUT OR FLAT-GRAIN
with the humidity of its permanent location. The map, Fig. 12, shows proper M.C. for various sections of the country, based on year-round humidity. A variation of 3 percent either way is permissible. Suppose, for example, that you live in a state where the humidity is about 40 percent indoors all year round. Table 1, Fig. 11, shows that the moisture content for furniture under such conditions should be 8 percent. If the wood is 8 percent M.C. to start with, it will be stable and will shrink and expand little even during the cycle of seasonal changes.

Determining M.C.: It is interesting and instructive to make a moisture-content test. Cut a strip about ½ in. wide from the center or about 1 ft. from the end of your lumber. Weigh the sample carefully, using a small scale reading grams or grains. Place the sample of wood in the kitchen-stove oven set at 220 deg. F. and weigh it every 20 minutes until it stops losing weight. This will take about 1½ hrs. Then, work out the calculation given in Fig. 11, and you will have the M.C. The amount of shrinkage of a test sample is graphically illustrated in Fig. 10. Although the sample is now bone dry, it won’t stay that way. Within three or four hours it will regain approximately half of its lost moisture and size, and in a few weeks will be nearly normal. This verifies the fact that wood is never truly seasoned—lumber 100 years old will absorb 16 to 18 percent moisture if stored outdoors. The best place to store your wood is in a location where the humidity is about the same as where the finished product will be used. Storing for several weeks in a warm, dry location is a good conditioning treatment.

Surfacing: Warped wood must be surfaced. This job is done on the jointer if the stock is within jointer capacity; otherwise with a planer head, Fig. 14. If the piece is badly twisted, guide runners should be nailed to the edges, Fig. 13, to form a flat base for the work. In using a planer head, be sure to adjust it to take a light cut.

Play it safe: If you have a choice, use edge-grain instead of flat-cut lumber. At least, avoid extreme grain angles in flat-cut stock. Use a wood known to have low shrinkage and good stability. Table No. 2.
Woods marked "poor stability" often are suitable if properly conditioned. Be sure your wood is 8 percent M.C. You will note in Table 1 that if wood is 8 percent M.C., the initial shrinkage of a 10-in. board from green wood will be 1/2 in. scant. The board also will be subjected to a seasonal cycle of about 1/16 additional shrinkage and the same amount for expansion. However, you will note that near the end of a humid summer, doors and drawers will swell and bind, and that in the dry indoor air of winter they return to their original M.C. and work smoothly. Some of this normal shrinking and expanding can be stabilized by reinforcing and solidly anchoring the wood in assembly. Thus, if humidity is not excessive, the wood will compress within itself and follow the path of least resistance. However, if you fabricate wood having a 16-percent M.C., the strain of stabilization at 8 percent is just too much, and "pop" go your glue joints and fastenings.

Retarding warping: The end grain of stock roughly cut into turning squares and stored for future use should be given a protective coating of shellac, varnish or oil paint to prevent checking. Lumber salvaged from old furniture and resurfaced on one side only is more apt to warp than if surfaced on both sides, as freshly dressed surfaces invite rapid absorption of moisture. Furniture should be finished as soon as possible after it is completed. Linseed oil, shellac, varnish and other finishes, when applied to the surface of the wood, form a practically air-tight covering through which moisture penetrates slowly. Finishing coats retard swelling and shrinking to the point that if the humidity increases 10 percent for a couple of days, there will be no appreciable change. If your wood is conditioned to 8 percent M.C., it will remain fairly close to 8 percent and you will not be troubled with warping. Ideas in Fig. 15 are worth noting in preventing warping and shrinking. Notice how cupping of a table top is avoided.

Table 2: Shrinkage of Woods

<table>
<thead>
<tr>
<th>WOOD</th>
<th>Shrinkage From 12% to 6% Moisture Content Per cent</th>
<th>In. In 10"</th>
<th>General Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASH</td>
<td>1.8</td>
<td>1/8"</td>
<td>BEST</td>
</tr>
<tr>
<td>BASSWOOD</td>
<td>2.3</td>
<td>1/8"</td>
<td>GOOD</td>
</tr>
<tr>
<td>BEECH</td>
<td>2.7</td>
<td>1/4"</td>
<td>POOR</td>
</tr>
<tr>
<td>BIRCH</td>
<td>2.2</td>
<td>3/8"</td>
<td>GOOD</td>
</tr>
<tr>
<td>CEDAR</td>
<td>1.3</td>
<td>1/4"</td>
<td>GOOD</td>
</tr>
<tr>
<td>CHERRY</td>
<td>1.8</td>
<td>3/8"</td>
<td>GOOD</td>
</tr>
<tr>
<td>CHESTNUT</td>
<td>1.7</td>
<td>3/16"</td>
<td>BEST</td>
</tr>
<tr>
<td>CYPRESS</td>
<td>1.5</td>
<td>3/16"</td>
<td>BEST</td>
</tr>
<tr>
<td>ELMA</td>
<td>2.3</td>
<td>1/4"</td>
<td>POOR</td>
</tr>
<tr>
<td>FIR (Douglas)</td>
<td>1.8</td>
<td>3/16"</td>
<td>FAIR</td>
</tr>
<tr>
<td>GUM (Red)</td>
<td>2.5</td>
<td>1/4"</td>
<td>POOR</td>
</tr>
<tr>
<td>HEMLOCK</td>
<td>1.8</td>
<td>3/16"</td>
<td>FAIR</td>
</tr>
<tr>
<td>MAHOGANY</td>
<td>1.2</td>
<td>1/16"</td>
<td>BEST</td>
</tr>
<tr>
<td>MAPLE (Hard)</td>
<td>2.4</td>
<td>1/4"</td>
<td>GOOD</td>
</tr>
<tr>
<td>MAPLE (Soft)</td>
<td>1.9</td>
<td>3/8"</td>
<td>GOOD</td>
</tr>
<tr>
<td>OAK (Red)</td>
<td>2.2</td>
<td>3/16"</td>
<td>BEST</td>
</tr>
<tr>
<td>OAK (White)</td>
<td>2.3</td>
<td>1/4"</td>
<td>BEST</td>
</tr>
<tr>
<td>PINE (Yellow)</td>
<td>1.8</td>
<td>3/16"</td>
<td>FAIR</td>
</tr>
<tr>
<td>PINE (White)</td>
<td>1.6</td>
<td>3/8"</td>
<td>GOOD</td>
</tr>
<tr>
<td>POPLAR</td>
<td>1.8</td>
<td>3/16"</td>
<td>BEST</td>
</tr>
<tr>
<td>REDWOOD</td>
<td>1.1</td>
<td>1/16"</td>
<td>BEST</td>
</tr>
<tr>
<td>SPRUCE</td>
<td>1.7</td>
<td>3/16"</td>
<td>BEST</td>
</tr>
<tr>
<td>SYCAMORE</td>
<td>1.9</td>
<td>3/8"</td>
<td>POOR</td>
</tr>
<tr>
<td>WALNUT</td>
<td>1.8</td>
<td>3/16"</td>
<td>BEST</td>
</tr>
</tbody>
</table>

* Flat-cut stock. Shrinkage of quartersawed wood will run 1/16 to 1/32 of these figures.

(From Table by U. S. Forest Products Laboratory)
WOOD SELECTING

1—This arch will last. It is:
(a) Hard Maple
(b) White Pine
(c) Redwood
(d) Red Gum

2—The end grain shows this wood has been:
(a) Slash-sawed
(b) Quarter-sawed
(c) Flat-cut
(d) Plain-sawed

3—Steam bending is easy with:
(a) Mahogany
(b) White Pine
(c) Birch
(d) White Oak

4—Careful! This wood splits:
(a) Beech
(b) Ash
(c) Sycamore
(d) Poplar

5—Excellent for white inlays:
(a) White Pine
(b) Poplar
(c) Holly
(d) Prima Vera

6—This mallet head is one of the hardest woods. It is:
(a) Harewood
(b) Chestnut
(c) Cocobola
(d) Amaranth

7—This shutter will be very durable against all kinds of weather:
(a) Hickory
(b) Spruce
(c) Cypress
(d) Basswood

8—It’s easy to see this is:
(a) Bird’s-eye Maple
(b) Sycamore Burl
(c) Flake Figure
(d) Feather Crotch

9—Excellent for boat planking:
(a) Mahogany
(b) Ash
(c) Fir
(d) Red Oak

10—Best wood for paint:
(a) Orientalwood
(b) White Pine
(c) Maple
(d) Locewood

11—This is most likely to happen when wood is:
(a) Green
(b) Flate-cut
(c) Heartwood
(d) Edge-grain

Do You Know Your WOODS?
Try This Simple Craft Quiz
KNOWING wood not only adds to the enjoyment of crafting but also helps in making any project a success. Naturally, the crafter is chiefly interested in how the wood will look when finished, but other important features should not be neglected.

Stability: “Will it stay put?” is an important consideration in all forms of woodcrafting. All woods shrink in seasoning, which causes distortion or warp, the four principal types being shown in Fig. 4. Some woods warp more than others, as indicated in Table No. 1, and can be made more stable by proper use. The common method of testing a board for warp is shown in Fig. 1. Sticks placed at either end of the board reveal cup and also show any twist or wind. The top edge of one stick should be light and the other dark to provide maximum vision. Just what makes a board warp is often illustrated by means of a fan made from a strip of thin paper about 6 in. wide by 2 ft. long. Brush marks are drawn across the fan to represent boards sawed from a tree, Fig. 3. Shrinkage in wood always occurs along the annual rings, so that if the fan is cut on either side, it will immediately shrink just like a split log would do. What happens to the original straight boards is shown by the
<table>
<thead>
<tr>
<th>Name of Wood</th>
<th>Weight Per Cubic Foot (1)</th>
<th>Hardness</th>
<th>Strength (2)</th>
<th>Stability (3)</th>
<th>Gluing (4)</th>
<th>Nailing (4)</th>
<th>Shaping and Bending (5)</th>
<th>Planing and Joining (5)</th>
<th>Turning (6)</th>
<th>Sanding (7)</th>
<th>Shaping (8)</th>
<th>Machining (8)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basswood</td>
<td>24 Soft</td>
<td>Weak</td>
<td>Good</td>
<td>Best</td>
<td>Best</td>
<td>Poor</td>
<td>Good</td>
<td>20-30</td>
<td>Poor</td>
<td>4/0</td>
<td>Poor</td>
<td>Fair</td>
<td>Excellent for toys, drafting boards, corestock.</td>
</tr>
<tr>
<td>Birch</td>
<td>40 Hard</td>
<td>Strong</td>
<td>Good</td>
<td>Fair</td>
<td>Poor</td>
<td>Good</td>
<td>Fair</td>
<td>15-20</td>
<td>Fair</td>
<td>4/0</td>
<td>Fair</td>
<td>Best</td>
<td>Excellent for furniture, turnings, dowels, handles.</td>
</tr>
<tr>
<td>Butternut</td>
<td>25 Soft</td>
<td>Weak</td>
<td>Best</td>
<td>Good</td>
<td>Poor</td>
<td>Poor</td>
<td>Fair</td>
<td>10-20</td>
<td>Fair</td>
<td>4/0</td>
<td>Fair</td>
<td>Best</td>
<td>Furniture—Perfect for walnut imitation.</td>
</tr>
<tr>
<td>Chestnut</td>
<td>27 Soft</td>
<td>Weak</td>
<td>Best</td>
<td>Good</td>
<td>Fair</td>
<td>Poor</td>
<td>Fair</td>
<td>15-20</td>
<td>Best</td>
<td>3/0</td>
<td>Good</td>
<td>Good</td>
<td>Stains badly in contact with wet iron. Very dusty in all machining operations.</td>
</tr>
<tr>
<td>Cottonwood</td>
<td>27 Soft</td>
<td>Weak</td>
<td>Fair</td>
<td>Best</td>
<td>Best</td>
<td>Poor</td>
<td>Poor</td>
<td>5-20</td>
<td>Poor</td>
<td>4/0</td>
<td>Fair</td>
<td>Fair</td>
<td>Excellent for boxes and other nailing jobs. Wears very well for all interior trim.</td>
</tr>
<tr>
<td>Elm (Southern)</td>
<td>34 Med.</td>
<td>Med.</td>
<td>Poor</td>
<td>Fair</td>
<td>Poor</td>
<td>Good</td>
<td>Poor</td>
<td>15-20</td>
<td>Good</td>
<td>2/0</td>
<td>Good</td>
<td>Fair</td>
<td>Very durable under paint. A good furniture wood despite difficulties in machining.</td>
</tr>
<tr>
<td>Gum (Red)</td>
<td>33 Med.</td>
<td>Med.</td>
<td>Poor</td>
<td>Good</td>
<td>Fair</td>
<td>Fair</td>
<td>Fair</td>
<td>10-20</td>
<td>Fair</td>
<td>4/0</td>
<td>Fair</td>
<td>Fair</td>
<td>One of the most used furniture woods for imitations of walnut and mahogany.</td>
</tr>
<tr>
<td>Hickory</td>
<td>42 Hard</td>
<td>Strong</td>
<td>Good</td>
<td>Poor</td>
<td>Good</td>
<td>Good</td>
<td>Fair</td>
<td>10-25</td>
<td>Best</td>
<td>2/0</td>
<td>Fair</td>
<td>Best</td>
<td>Excellent for furniture and long a favorite for steam bending, loci handles, wheels.</td>
</tr>
<tr>
<td>Magnolia</td>
<td>30 Soft</td>
<td>Weak</td>
<td>Fair</td>
<td>Best</td>
<td>Best</td>
<td>Fair</td>
<td>Good</td>
<td>5-15</td>
<td>Fair</td>
<td>4/0</td>
<td>Good</td>
<td>Poor</td>
<td>Excellent for steam bending, although little used as such. Often marketed as poplar.</td>
</tr>
<tr>
<td>(9) Maple (Hond)</td>
<td>41 Hard</td>
<td>Strong</td>
<td>Good</td>
<td>Poor</td>
<td>Fair</td>
<td>Fair</td>
<td>Good</td>
<td>15-20</td>
<td>Good</td>
<td>4/0</td>
<td>Best</td>
<td>Best</td>
<td>Fine furniture, flooring, turnings, bowling pins. One of the best hardwoods.</td>
</tr>
<tr>
<td>Oak (Red)</td>
<td>39 Hard</td>
<td>Strong</td>
<td>Best</td>
<td>Good</td>
<td>Best</td>
<td>Poor</td>
<td>Fair</td>
<td>10-25</td>
<td>Best</td>
<td>2/0</td>
<td>Fair</td>
<td>Best</td>
<td>Substitute for white oak in cheaper work.</td>
</tr>
<tr>
<td>Oak (White)</td>
<td>40 Hard</td>
<td>Strong</td>
<td>Best</td>
<td>Good</td>
<td>Best</td>
<td>Poor</td>
<td>Good</td>
<td>10-20</td>
<td>Best</td>
<td>2/0</td>
<td>Good</td>
<td>Best</td>
<td>Interior trim, floors, furniture. One of the most used American woods.</td>
</tr>
<tr>
<td>Pine (White)</td>
<td>25 Soft</td>
<td>Weak</td>
<td>Good</td>
<td>Best</td>
<td>Best</td>
<td>Poor</td>
<td>Good</td>
<td>10-25</td>
<td>Good</td>
<td>2/0</td>
<td>Good</td>
<td>Fair</td>
<td>Best around soft wood. Excellent for paint.</td>
</tr>
<tr>
<td>Pine (Yellow)</td>
<td>38 Hard</td>
<td>Strong</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
<td>Good</td>
<td>Fair</td>
<td>10-20</td>
<td>Poor</td>
<td>4/0</td>
<td>Good</td>
<td>Good</td>
<td>Main uses—House construction, trim, floors.</td>
</tr>
<tr>
<td>Poplar</td>
<td>29 Soft</td>
<td>Weak</td>
<td>Good</td>
<td>Best</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
<td>5-20</td>
<td>Good</td>
<td>4/0</td>
<td>Fair</td>
<td>Poor</td>
<td>Excellent for carvings, toys, corestock.</td>
</tr>
<tr>
<td>Redwood</td>
<td>29 Soft</td>
<td>Med.</td>
<td>Best</td>
<td>Good</td>
<td>Best</td>
<td>Poor</td>
<td>Poor</td>
<td>10-25</td>
<td>Good</td>
<td>3/0</td>
<td>Fair</td>
<td>Poor</td>
<td>Excellent for outdoor furniture, window sills, etc.</td>
</tr>
<tr>
<td>Sycamore</td>
<td>35 Med.</td>
<td>Med.</td>
<td>Poor</td>
<td>Best</td>
<td>Poor</td>
<td>5-15</td>
<td>Good</td>
<td>3-5</td>
<td>Poor</td>
<td>3/0</td>
<td>Good</td>
<td>Best</td>
<td>Interior trim, furniture, difficult to machine, but excellent appearance.</td>
</tr>
<tr>
<td>Walnut</td>
<td>36 Med.</td>
<td>Strong</td>
<td>Best</td>
<td>Fair</td>
<td>Good</td>
<td>15-20</td>
<td>Good</td>
<td>4/0</td>
<td>Best</td>
<td>4/0</td>
<td>Good</td>
<td>Best</td>
<td>Has every good feature for furniture and cabinet work.</td>
</tr>
</tbody>
</table>

NOTES

Date in this chart is largely from extensive tests made by U.S. Forest Products Laboratory, with some additions.
1. Founds per cubic foot, dry. All woods vary in weight, even in the same tree from trunk to top. A variation of 10% over or under average should be allowed.
2. Composite strength value. Woods rated weak are strong enough for all average work.
3. Rated an unstrained warp. Most woods are quite stable if properly seasoned and cared for.
4. Rated an ability to take nails near end without splitting.
5. All flat grain stock, shallow cut. Rating is average from runs at 15, 20 and 25-degree cutting angles. Bottom figure is best knife angle for smooth cutting.
6. Rated on smooth cutting and ability to hold detail. Not much difference between best and good.
7. Rated on freedom from fuzz. Bottom figure is coarsest abrasive grit which can be used without scratching.
8. Rated on smoothness of cut. Work speed decreases with hardness of wood and this factor might be of more importance than smoothness in production work.
9. Sugar, white or hard maple. Should be distinguished from silver, red, big-leaf or soft maple, which is an inferior machining wood although often marketed simply as "maple."
fan, Fig. 5. The flat-cut boards always curl away from the heart and the square timber shrinks badly on one side, but the quartersawed board is quite stable. From these observations, it is apparent that quartersawed lumber is preferable for maximum stability. Also, if the board is cupped, it is certain that the rounded side is the heart side. Fig. 2 shows how the end grain indicates the type of sawing. Quartersawed lumber also is known as radial-cut edge-grain, rift-grain and comb-grain. Flat-cut lumber is variously named slash-grain, bastard-grain, plain-sawed and tangential cut.

The right side: When using flat-cut lumber, keep the heart side toward the outside surface of the work. Then, if the board does cup, it will show rounded on the face, which is much better than a hollow and much stronger structurally. An exception is painted wood used outdoors. Paint holds better on the bark side and there is less danger of the grain shelling out.

Moisture content: Wood for furniture will be stable if the moisture content is from 6 to 8 percent. This is obtained automatically if the wood is stored for three or four weeks in the same atmosphere at which it will be used. Lumber from commercial dry kilns has a moisture content of about 8 percent. Lumber air-dried outdoors will have a moisture content of about 20 percent, and should not be used for furniture until it has seasoned three or four weeks indoors. Sometimes it is a good idea to check the moisture content of wood before using it. Weigh a small sample exactly and then put it in the kitchen oven. Check the weight at intervals until the wood ceases to lose weight. Ascertain the weight difference and divide by the bone dry weight to get the moisture content. For example, if the test piece weighs 10 oz. at the start and 8 oz. oven dry, the difference is 2 oz., representing moisture, or 25 percent moisture content. The test can be done in a half hour by splitting the sample into thin strips to hasten drying.

Machining: Some woods machine much better than others. Note in Fig. 7 how walnut takes a smooth jointer cut, while soft maple is very rough. Suitability of various woods for machining is indicated in Table No. 1. Jointing, Fig. 9, is the most important test. Other than the wood itself, the method of machining affects the finished work. This can be observed in jointing, where much better work often can be done by changing the rake angle of the knives. Most small jointers have the knives fixed at about 30 degrees rake. This is excellent for knife efficiency, but the sharp angle tends to tear the grain of many woods. For production work in these woods it is advisable to reduce the rake angle by using shims or grinding a front bevel as shown in Fig. 8. Other useful characteristics of woods are given in the table. The "hardness" column lists woods according to whether they are physically hard or soft. Generally, the botanist's classification of hardwoods (broad-leaved trees) indicates a physically hard wood, but there are several exceptions, including such hardwoods as basswood, poplar, cottonwood and aspen, all of which are quite soft. Exceptions in reverse also will be found. Yellow pine, for example, although botanically a softwood (coniferous or needle-leaved trees), is actually harder than many hardwoods. If the wood is hard, it is always heavy without exception; if the wood is hard, it generally is strong.
<table>
<thead>
<tr>
<th>Natural Color</th>
<th>Usual Grain Figure</th>
<th>Stain Type (1)</th>
<th>Filler Color</th>
<th>Bleach</th>
<th>Paint</th>
<th>Natural Finish</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alder (Red)</td>
<td>Pink to Brown</td>
<td>Wiping or Water</td>
<td>Red or Brown</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Principal hardwood of Pacific coast. Like red gum</td>
</tr>
<tr>
<td>Amaranth (Purpleheart)</td>
<td>Purple</td>
<td>None</td>
<td>None or 6 Match Wood</td>
<td>No</td>
<td>No</td>
<td>Yes, Pref.</td>
<td>Usually finished natural to retain purple color.</td>
</tr>
<tr>
<td>Ash (U.S.A.)</td>
<td>White to Brown</td>
<td>Any</td>
<td>15 White or Brown</td>
<td>Yes, Fill First</td>
<td>Yes</td>
<td>White filler used for frosted finish (3)</td>
<td></td>
</tr>
<tr>
<td>Basswood</td>
<td>Cream Very Mild</td>
<td>NGR</td>
<td>Red or Brown</td>
<td>No</td>
<td>No</td>
<td>Yes, Pref.</td>
<td>Fuzzy grain. Usually muddily under all stain.</td>
</tr>
<tr>
<td>Birch</td>
<td>Cream Mild</td>
<td>Any</td>
<td>Walnut or Mahogany B Natural or Brown</td>
<td>Yes, Interior</td>
<td>Yes</td>
<td>Used extensively for walnut and mahogany</td>
<td></td>
</tr>
<tr>
<td>Butternut</td>
<td>Heart, Amber Sep, Cream</td>
<td>Water</td>
<td>Walnut or Oak</td>
<td>14 Medium Brown</td>
<td>Yes</td>
<td>No</td>
<td>Good for amber walnut without bleaching</td>
</tr>
<tr>
<td>Cedar (Aromatic Red)</td>
<td>Heart, Red Sep, Cream</td>
<td>None</td>
<td>None</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Red-wiping stain can be used to blend sap wood</td>
</tr>
<tr>
<td>Cherry</td>
<td>Red to Brown</td>
<td>Water</td>
<td>Red or Brown 6-8 Red to Black</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Takes excellent finish. Good for brown mahogany</td>
</tr>
<tr>
<td>Chestnut</td>
<td>Gray-Brown</td>
<td>Oil or Wiping</td>
<td>Red or Brown</td>
<td>No</td>
<td>Yes</td>
<td>Yes, Large pores. Good for novelty finishes (3)</td>
<td></td>
</tr>
<tr>
<td>Cypress</td>
<td>Heart, Brown Sep, Cream</td>
<td>Water, Oil or Wiping</td>
<td>Red or Brown</td>
<td>No</td>
<td>Yes</td>
<td>(5) Yes</td>
<td>Good for solid stain (4) if water stained, see (5)</td>
</tr>
<tr>
<td>Ebony</td>
<td>Dark Brown to Black</td>
<td>NGR</td>
<td>Dark Red or Brown None or 3 Brown or Black</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Oily. Gabacon ebony is blackest</td>
</tr>
<tr>
<td>Elm (Southern)</td>
<td>Brown to Red-Striped</td>
<td>Water</td>
<td>Red or Brown</td>
<td>No</td>
<td>Yes</td>
<td>Cross-grained. Sometimes hard to get even color</td>
<td></td>
</tr>
<tr>
<td>Fir (Douglas)</td>
<td>Cream to Red</td>
<td>Wiping or Oil</td>
<td>Brown</td>
<td>No</td>
<td>Yes</td>
<td>No, (7) No</td>
<td>Good for solid stain (4) Not pleasing stained</td>
</tr>
<tr>
<td>Gum (Red)</td>
<td>Heart, Br. Sep, Cream</td>
<td>Any</td>
<td>Red or Brown</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Most used wood for walnut and retains purple imitations</td>
</tr>
<tr>
<td>Hickory</td>
<td>White to Cream</td>
<td>Usually Straight</td>
<td>Brown</td>
<td>Yes</td>
<td>Yes</td>
<td>Good walnut or mahogany—blond finishes</td>
<td></td>
</tr>
<tr>
<td>Hally</td>
<td>Silver White</td>
<td>Water</td>
<td>Amber</td>
<td>None</td>
<td>No</td>
<td>Yes</td>
<td>One of the whitest woods. Usually finished natural</td>
</tr>
<tr>
<td>Magnolia or Peolar</td>
<td>White to Yellow</td>
<td>Oil or Wiping</td>
<td>Red or Brown</td>
<td>No</td>
<td>Yes</td>
<td>Usually painted. Makes fair satinwood imitation</td>
<td></td>
</tr>
<tr>
<td>Lacewood (Silky Oak)</td>
<td>Medium Brown</td>
<td>Water Oak</td>
<td>Oak or Oak or Walnut</td>
<td>Brown</td>
<td>Fairly Well</td>
<td>No</td>
<td>Excellent cabinet wood. Very decorative</td>
</tr>
<tr>
<td>Mahogany</td>
<td>Brown to Red-Striped</td>
<td>Water</td>
<td>Red or Brown</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Best known cabinet wood. Excellent finish finishes</td>
</tr>
<tr>
<td>Mahogany (Philippine)</td>
<td>Brown to Red-Striped</td>
<td>Water or Wiping</td>
<td>Red or Black</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>NGR stain preferable to minimize grain-raising</td>
</tr>
<tr>
<td>Maple</td>
<td>Cream Varied</td>
<td>Water or Wiping</td>
<td>Maple None</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Use NGR stain and tone with wiping stain after sealer</td>
</tr>
<tr>
<td>Oak (English Brown)</td>
<td>Deep Brown</td>
<td>Plain, Flake or Swirl</td>
<td>NGR Brown</td>
<td>15</td>
<td>Brown to Black Yes</td>
<td>Yes</td>
<td>Of the best cabinet woods. Also "Pallad Oak"</td>
</tr>
<tr>
<td>Oak (Red)</td>
<td>Red-Brown</td>
<td>Plain or Flakes</td>
<td>NGR Green Tones (8)</td>
<td>15</td>
<td>Brown</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Oak (White)</td>
<td>White to Light Brown</td>
<td>Plain or Flakes</td>
<td>NGR Brown</td>
<td>15</td>
<td>Brown</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Orientalwood</td>
<td>Light Brown Stripe</td>
<td>Crossfire</td>
<td>Water Amber or Brown</td>
<td>12</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Pine (White)</td>
<td>White to Cream</td>
<td>Water (5) or Oil</td>
<td>Amber</td>
<td>12</td>
<td>No</td>
<td>No</td>
<td>Best for painting</td>
</tr>
<tr>
<td>Prima Vera</td>
<td>Yellow-White Stripe</td>
<td>Crossfire</td>
<td>Water</td>
<td>Amber</td>
<td>12</td>
<td>Natural or Dark</td>
<td>No</td>
</tr>
<tr>
<td>Redwood</td>
<td>Red Mild</td>
<td>Red only for toning</td>
<td>None</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Excellent exterior wood. Best painted</td>
</tr>
<tr>
<td>Rosewood (Brazil)</td>
<td>Red-Brown</td>
<td>NGR Red</td>
<td>13 Dark Red or Black</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Oily. Wets off with lacquer thinner before staining or finishing</td>
</tr>
<tr>
<td>Rosewood (East Indies)</td>
<td>Red-Purple</td>
<td>Stripe</td>
<td>NGR Dark Red</td>
<td>12</td>
<td>Dark Red</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Sapelli</td>
<td>Medium Brown Stripe</td>
<td>Water Red or Brown</td>
<td>Amber</td>
<td>10</td>
<td>Dark Brown</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Sycamore</td>
<td>White to Brown</td>
<td>Water Amber or Brown</td>
<td>None</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Very pronounced grain. Good for modern effects</td>
</tr>
<tr>
<td>Walnut</td>
<td>Heart, Brown Sep, Cream</td>
<td>Water Walnut</td>
<td>Walnut</td>
<td>14</td>
<td>Brown to Black</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Zebrawood</td>
<td>Tan with Brown Stripe</td>
<td>Heavy Water Light Oak</td>
<td>12</td>
<td>Natural</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

NOTES

1. Where water stain is indicated, NGR (non-grain-raising) stain can also be used. "Oil" means penetrating oil stain. "Wiping" means wiping oil stain.
2. Pounds of filler pastes per gallon of thinner.
3. All coarse-grain woods are good for novelty finishes, using contrasting filler, usually white.
4. Woods with alternate hard and soft streaks can be sandblasted or burned with torch to cut out soft wood.
5. Water stains take better on resinous woods if wood is first sanded with 40 oz. sal soda and 1 oz. washing soda to gallon of water.
6. Add 1 pt. benzol per gal. of paint for better penetration (primer only).
7. Special sealers available to kill grain.
8. For brown tones, first spray weak green stain to kill red color of wood.
Finishing: Finishing often is the prime characteristic in selecting a cabinet wood. When you have a wood that machines and finishes nicely, then you have a top-notch cabinet wood. Information given in Table No. 2 will help in selecting a wood for finish, and is a fair guide as to how the wood should be finished. Finishing is closely related to the natural beauty of the wood, necessitating some knowledge of grain and “figures” for suitable selections. Figures in wood constitute a whole subject in themselves, and the few samples shown in Figs. 10 to 16 can be taken only as typical examples. Perhaps the best way to become acquainted with figures and also the many different kinds of woods is to purchase a set of wood samples, Fig. 6. A set of fifty samples is an inexpensive and worthwhile investment, and it is surprising how quickly identification and general knowledge of various woods can be learned by “leafing” through such a set. The samples are small wood blocks packaged in a neat box and should be kept in a clean, dry place.

Grading of wood: A knowledge of wood grading is useful. For example, if you want a poplar board for painting, you would order “stained saps,” (fifth-grade lumber), and the finished job would be practically as good as if made from “firsts and seconds.” Essential grading data is given in Table No. 3. This table is not complete nor absolutely accurate, but it can be taken as a general guide. There are actually ten grades of lumber. Of these, eighth and ninth grade mahogany is the only one of interest to the crafter. This grade comprises wood of firsts and seconds quality but in short lengths. It should be noted in the table that numbered gradings are not comparable between different woods. For example, fifth grade poplar is a much better wood for a paint job than fifth grade chestnut. Grading rules for softwoods are much different than for hardwoods, and the differences should be carefully noted from the table.

Table No. 3 GRADING OF WOODS (Condensed)

<table>
<thead>
<tr>
<th>Hardwoods</th>
<th>1st Grade</th>
<th>2nd Grade</th>
<th>3rd Grade</th>
<th>4th Grade</th>
<th>5th Grade</th>
<th>6th Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ash, Beech, Birch, Hard Maple, Red Alder</td>
<td>Firsts and Seconds</td>
<td>Selects</td>
<td>No. 1 Common</td>
<td>No. 2 Common</td>
<td>Sound</td>
<td>Warmy</td>
</tr>
<tr>
<td>Cherry</td>
<td>Firsts and Seconds</td>
<td>Selects</td>
<td>No. 1 Common</td>
<td>No. 2 Common</td>
<td>No. 3A</td>
<td>Common</td>
</tr>
<tr>
<td>Chestnut</td>
<td>Firsts and Seconds</td>
<td>Selects</td>
<td>No. 1 Common</td>
<td>Sound</td>
<td>Warmy</td>
<td>No. 2 Common</td>
</tr>
<tr>
<td>Cottonwood, Red Gum</td>
<td>Firsts and Seconds</td>
<td>Selects</td>
<td>No. 1 Common</td>
<td>No. 2 Common</td>
<td>No. 3A</td>
<td>Common</td>
</tr>
<tr>
<td>Elm, Hickory</td>
<td>Firsts and Seconds</td>
<td>No. 1 Common</td>
<td>No. 2 Common</td>
<td>No. 3A</td>
<td>No. 3B</td>
<td>Common</td>
</tr>
<tr>
<td>Mahogany</td>
<td>Firsts and Seconds</td>
<td>Selects</td>
<td>No. 1 Common</td>
<td>No. 2 Common</td>
<td>No. 3</td>
<td>Common</td>
</tr>
<tr>
<td>Red Oak, White Oak Locust, Sycamore</td>
<td>Firsts and Seconds</td>
<td>Selects</td>
<td>No. 1 Common</td>
<td>No. 2 Common</td>
<td>Sound</td>
<td>Warmy</td>
</tr>
<tr>
<td>Poplar</td>
<td>Firsts and Seconds</td>
<td>Saps</td>
<td>Selects</td>
<td>Stained Saps</td>
<td>No. 1</td>
<td>Common</td>
</tr>
<tr>
<td>Walnut, Butternut</td>
<td>Firsts and Seconds</td>
<td>Selects</td>
<td>No. 1 Common</td>
<td>No. 2 Common</td>
<td>No. 3</td>
<td>Common</td>
</tr>
</tbody>
</table>

Firsts—About 91% clear both sides. Selects—90% clear one side. Seconds—About 83% clear both sides. No. 1 Common—About 75% clear face. Firsts and Seconds—Best commercial grade. Not less than 20% firsts. Sound Warmy—No. 1 common but with wormholes.

Softwoods | 1st Grade | 2nd Grade | 3rd Grade | 4th Grade | 5th Grade | 6th Grade |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Boards</td>
<td>A Select</td>
<td>B Select</td>
<td>C Select</td>
<td>D Select</td>
<td>No. 1 Common</td>
<td>No. 2 Common</td>
</tr>
<tr>
<td>Dimension Stock</td>
<td>No. 1 Common</td>
<td>No. 2 Common</td>
<td>No. 3 Common</td>
<td>No. 3 Common</td>
<td>No. 3 Common</td>
<td>No. 3 Common</td>
</tr>
</tbody>
</table>

A Select—Clear and suitable for natural finish. B Select—Allows a few small defects but suitable for natural finish. C Select—Allows a few defects which can be covered by paint. D Select—Allows any number of defects, which can be concealed by paint. No. 1 Common—Sound and tight-knotted wood.

Figures in wood are varied with about 25 recognized styles, a few of which are shown above.
ASH—Takes all stains well. Requires heavy filler for all level finishes. Sometimes finished without filler, especially in its natural light color. Makes a good gray with silver-gray stain and gray filler. All finishes are usually dull-rubbed or waxed.

BIRCH—Has small pores and can be finished with or without filler. Makes good walnut, mahogany or cherry finish. Attractive and widely used in natural finish. Bleaches.

CEDAR—Requires shellac sealer coat to seal the oil in the wood. Red and white areas can be blended closer together with use of Venetian-red oil color reduced with naphtha and applied with rag. No finish should be applied to interior of chests, closet linings, etc.

CHERRY—Attractive in light brown or red. Does not bleach. Small pores need not be filled although a thin filler is useful. Usually rubbed and polished except in antique finish, which should be satin or dead flat.

FIR—Not a good cabinet wood, but extensively used in plywood form for paneling. Wild grain and tendency to check is greatly minimized by the use of synthetic resin primer, which should be used for both clear and enamel finishes. Does not bleach, although a novelty effect with very pronounced grain can be obtained by bleach which will act only on soft, light-colored portion of wood.

GUM—Red gum, satin walnut. Finish with or without filler. Attractive in natural finish or can be stained to imitate walnut or mahogany. Bleaches.

KORINA—Creamy gray color is attractive in natural finish. Grain and pores similar to mahogany and requires same filler base. Makes perfect red or brown mahogany when stained. Can be bleached for very light tones.

MAHOGANY—True mahogany should be finished only as mahogany in various standard shades of red and brown. Avoid dark stains. Bleaches well although medium light tones are more easily obtained by using primavera or korina in natural color. All mahoganies and especially the substitutes—African, Philippine, Tanguile, etc.—tend to whisker under water stain and are best finished with non-grain-raising stains. A natural finish without stain is attractive, using natural filler.

MAPLE—Requires no filler. Selected white wood can be used for modern blond tones, with or without staining. Brown and red tones are usually obtained with a double-staining technique (see page 14). Bleaches, except mineral streaks do not respond.

OAK—Over 300 varieties, all of which can be generally classed red or white. White oak is superior. Pores are very open and require a heavy filler base of 15 lbs. for level finish. No stain required for natural, light or golden colors. No filler required for certain period finishes such as Jacobean, Weathered and Mission. Excellent for novelty finishes with filler contrasting against the stained color of the wood. Good for gray finishes with gray stain, gray filler. Good grays can be obtained on red-oak by first treating the wood with a light green stain to kill the pronounced red color.

PINE, White—Not a cabinet wood but attractive in natural and stained finishes for woodwork. Most varieties are subject to some pitch bleeding and should be sealed with a first coat of synthetic resin primer, using clear for clear finishes, white for enamels. Not attractive in red colors and should be stained brown only. Makes fair maple substitute. Can be blended with white wiping stain.

PINE, Yellow—Stranger grain than white pine but can be tamed with clear resin primer. Extensively used for woodwork in natural finish. Does not bleach. Excellent for enamel with resin primer, or can be treated as per Note 5 on opposite page.

ROSEWOOD—Oily and should be washed with lacquer thinner immediately before finishing. Brazilian rosewood is usually finished with a light-red stain, mahogany filler; East Indian takes dark-red filler.

SYCAMORE—Excellent in natural creamy finish; can be bleached for lighter tones. Also attractive in rich brown obtained with water or NGR stain.

WALNUT—Excellent in all shades of brown, never red. Sap wood is creamy and requires extra stain coat to match. Excellent color can be obtained with use of hot linseed oil. Pores are usually filled, matching the stained color of wood or darker. Bleaches and is attractive in amber and gray tones. Red gum is used for imitating. Oriental wood is perfect substitution.

ZEBRAWOOD—Pronounced stripe is best retained with natural finish, using natural filler over a wash coat of shellac or lacquer.
Woodworker's Tool Chest

There's a place for each tool and you'll know just where to find it if your woodworking tools are kept in a chest like the one built by Vernon Cutler of Bremerton, Wash. In addition to its convenience and efficiency, this chest conserves workshop space and, if constructed with close-fitting joints and lid, it appreciably retards tool rust. The chest has a spacious drawer for storing planes and other large tools, nine smaller drawers, a tool panel that folds compactly into its compartment, and plenty of room on the inside of the lid for hanging saws, a level and a square. Even the space between the large drawer and chest bottom can be utilized...
Above, roomy bottom drawer provides ample storage space for planes or other large tools. Below, drawer inserts permit the number of compartments to be increased without the installation of extra drawers for storing blueprints, magazine plans and pamphlets.

The outer shell of the chest is of cedar with all corners and edges protected by oak trim. The top and sides are lined with \(\frac{3}{8} \)-in. plywood panels and the bottom with \(\frac{1}{4} \)-in. plywood. These liners extend \(\frac{3}{8} \) in. beyond the front edges of the top and sides to form a rabbet for the lid, Fig. 1 and Fig. 2, section B-B. Two \(\frac{3}{16} \) by 1-in. oak cleats are fastened across the bottom of the chest to give additional support. The vertical partitions and hardwood drawer runners are inserted as in Fig. 1 and Fig. 2, section A-A. All drawer fronts and the door for the tool-panel compartment should fit flush with the chest sides.

The tool panels are hinged and fitted as in Fig. 1, leaving at least \(\frac{1}{8} \)-in. clearance between each wall of the compartment and the panels when they are folded. Note the wooden stop and the dowel spacers for the panels. The extension support, upper right-hand detail, Fig. 3, holds the tool panels in the open position. The lid is constructed in the same way as the rest of the chest, and is mortise-hinged to the chest top. Fig. 3 shows fixtures for mounting tools on inside of lid.
WOODWORKING leads all other homeshop hobbies. It is the most lasting and also the most satisfying. One of the most powerful appeals of wood to all workers is the ease with which it can be fashioned into useful products. Power tools have made it possible for the average skilled worker to saw four legs, cut and mold a top, make the mortises, and emerge from the basement with a nice table—all in one evening. He can make novelty lawn figures in a matter of minutes by simply tracing around a plan and then cutting it out on the jigsaw. Before the clock folds its hands he can turn a neat bedroom lamp, fashion a jewel box of exotically grained wood, or shape and nail a picture frame.

The typical wizard in wood is a married man. He has about five power tools and four motors. His shop is in the basement and measures about 12 x 20 ft. The whole layout cost him about $500. He works in it on an average of about two nights a week, with occasional spells of concentrated effort. He allows the whole works to rust during the summer months. He turns out an amazing number and variety of projects, most of which are doomed to collect dust in the attic or supply splendid splinters for a quick morning fire. As time goes by he becomes increasingly critical of both his tools and his projects. Eventually he falls in love with wood itself—the cool, smooth caress of maple, the rippling crossfire of mahogany.

DATA...

SHOP SIZE
12 x 20 ft. (½ of full basement) is the average shop size. This is 240 sq. ft.

TOOLS
The complete woodworking shop needs a jigsaw, bandsaw, bench saw, belt sander, drill press, wood lathe and jointer, together with accessories and hand tools

COST
Complete equipment means an outlay of between $400 and $1200. The average is about $500, laid out over three years.
and the intricate patterns of crotch walnut. Wood seasons slowly, and so must the man who works it. The actual beginnings of a woodworking shop are simple and prosaic. All you do is buy a jigsaw or a circular saw for your first tool. You put it down in the middle of the basement and hook it up with an extension cord to the nearest available electric outlet. Obviously you have no need of a floor plan. If this first tool is a circular saw, you will spend some time reading all about how it is adjusted and operated, because you have read somewhere that a circular saw can cut off your fingers with dreadful accuracy when improperly handled. After ripping and cross-cutting a few boards, you come to realize that your saw is not exactly a monster if you treat it right. You make a few shelves as dictated by the lady of the house. After that, most of the enthusiasm will evaporate, since the circular saw is not in itself a complete shop. You start thinking, “What I should have bought was a jigsaw; then I could have made a rocker for the baby.” So you start saving your money and anticipating the things you will make after you get a jigsaw. You are on your way.

Woodworking projects comprise everything from bird cages to furniture, finally call for top craftsmanship.

The location of the shop is the first problem. Generally it means that you are going to take over at least half, if not all of the basement. If you don’t have a basement, you’ll be planning your shop for an extra room in the house or in the attic. Garage workshops are not so hot (the expression is well-chosen for winter, the workshop season). Obviously the best location is a spot where you can have available the heating, lighting and plumbing facilities of the home. If you do average woodworking, the basement is just right as to temperature, because it will be about 65° to 68° when the rooms above are from 70° to 80°. The garage workshop or the separate outdoor shop becomes increasingly practical as enough time is spent in it to justify a heating system. But as a starter, one lone power tool sitting in a cold garage is no incentive to production. Some of the “plushiest” shops are built in a separate wing of the home, but these supershops are reserved strictly for men who have been in the craft long enough to justify the expense.

You will want to acquire new tools as quickly as possible. You will buy or build a workbench and put up a tool panel. You will make a shelf and line it with glass jars for hardware. All this comes in the first year of woodcrafting. Even when money is no object, it is not too smart to install an
One of the nicest things about woodworking is the ability to make things for the next generation—especially your own contributions. A jigsaw plus one evening will make the above duck rocker.

Above: An excellent example of a spare-room or attic workshop. Below: A good basement-shop layout. The concrete floor has been painted, making it much easier to sweep and keep spotlessly clean.

entire shop in one move—you rob yourself of a lot of pleasurable anticipation and end up with a bunch of strange machines for which you have no feeling and which you cannot run as expertly as tools which have been acquired individually.

The exact order in which you buy your tools will be dictated by what you do. You will need at least four of the six basic machines before you can even consider any of the more specialized tools. Broadly speaking, the jigsaw is the best first tool. This might be followed by a drill press, a circular saw, and a wood lathe. When you have these four tools you can build almost anything in wood. The cost of these four machines, in light but good-quality equipment, is about $190, without motors.

The problem of motors is the beginner's main headache. A good motor costs about as much as a light power tool itself. Usually, you double up at first, making use of some system which permits the running of two or more power tools with one motor.

All of these problems—the selection of the first power tools, the arrangement of the shop, and the purchase of additional equipment are treated extensively in other sections of this book. But it is well to be forewarned of the problems that lie ahead.
AFTER you have acquired about four of the six basic tools, you will begin to cast your eye at other equipment. By this time you will be appreciative of the fact that hand sanding is hard work. "Boy, if I just had a belt sander or a portable job!" And so, first the thought and then the deed.

Prices for sanders start at about $40 and it takes a little picking to decide exactly what you want. Definitely, it must be belt-faced. In floor or bench machines, these can be obtained in 4 or 6-in. widths. Like the jointer, the 4-in. is as good as the 6-in. for edge work, while the 6-in. or any other size is never big enough for surfacing jobs. Combination units combining a belt and disk, as in the photo above, are excellent for general craftwork. The individual belt sander in a 6-in. width is a justly popular machine. Most belt sanders can be tilted to work either horizontally for surfacing or vertically for edge work. However, the conversion feature is of no great value—you use the machine one way or the other and that's that.

One of the difficulties in selecting sanding equipment is the fact that no one machine will do everything. While a bench or floor belt sander will probably be your first choice, you will immediately find out you can't sand a boat with it and you can't sand that beautiful piece of mahogany plywood you have worked up for a table top. The
A shaper does the fancy edge work in home furniture construction. A ½-hp. shaper is the best size for average homeshop work.

Proper tools for these jobs are the portable sander and the stroker-type belt, as pictured in the photos on page 27. Unfortunately, the cost is high and the need not too pressing, so these machines stay in the realm of “I wish” as far as most crafters are concerned. When you buy any sander, don’t forget the motor. Any type of abrasive surface offers a tremendous resistance when work is held against it—the 6-in. belt or 12-in. disk should be powered with nothing less than ½ horse.

If you do furniture work, you may consider a shaper. This is one machine that has wonderful possibilities for a wide variety of work—but you can do most of the jobs fairly well on other machines. The cleanest and cheapest setup for shaping wood edges is the molding or coping head used on the circular saw. The use of ½-in. cutters on the drill press is often substituted, but is not nearly as clean in action.

Most shops eventually get around to a grinder, but this is another tool you can do without for a long time. If you have a wood shop, sole use of the grinder will be to sharpen tools. For this small amount of work, it is simple and satisfactory to use a grinding wheel mounted in the lathe or drill press. However, a belt-driven grinder is inexpensive and often worth-while. Usually it can be driven from some other machine, such as the jigsaw setup shown below, so it doesn’t have the bug of motor cost being more than the machine.

What else? Well, it depends pretty much on what you do. No crafter, once he gets started in the business, is troubled much by what tools he must have next. For one thing, you don’t really need them. Once you are set up with a buzz saw, a drill press, a wood lathe and a bandsaw, you can make a pretty fair stab at almost anything. However, just to complete the picture, additional tools get the once-over on the following page.
HAND GRINDER is the big little tool for a thousand jobs. Two sizes are most popular, one taking ¼ and 5/32-in. shank tools, the other all shanks to ¼ in. The small size has high speed, is excellent for most light work. The larger size runs slower, packs more wallop for heavier work.

PORTABLE SAW has limited uses in the home workshop. The small model with swinging 4½-in. blade costs less than $50.

GEM-CUTTER spindle carries laps and grinding wheels. Price, $30 to $50, less motor, accessories. Will also hone your fine tools.

VIBRATING TOOL is relatively a bargain at $7.50. Easy to use, excellent for marking metals, tooling leather, etching glass or plastics, etc. Has no motor—operates by vibrating coil, which is rather noisy. Accessories include knives, chisels, needles and also ball-point hammers.

FLEXIBLE SHAFT is another versatile performer, doing all the work of a hand grinder with easier handling and the ability to get into close corners. Motors range from ¼ to 1/25 hp. Small sizes of ¼ to 5/32-in. core are popular. Price, $3 up without motor, $20 up with a motor.

RADIAL SAW differs from a bench saw in that saw moves while work remains stationary. Adjustments and accessories permit routing, dadoing, shaping and sanding as well as conventional cross-cutting and ripping. Available in flexible-shaft or direct drive from ½-hp. motor.

ELECTRIC DRILL is the principal portable power tool in the homeshop. Most popular size is ¼-in. chucking capacity, which ranges in price from $25 to $50.

PLANER is used for surfacing boards. Popular size handles 4x12-in. work. Too expensive at $500 and up for most workshops.

DUPLICATE CARVER copies automatically any type of carving placed under the tracing arm. It is excellent as complete hobby tool in itself or as a supplement to regular shop tools. Motor unit can be used as power source for flexible shaft. Price is less than $50 with accompanying motor. This is a limited, luxury tool.
LUMBER LIST (MILL SIZES)

TOP - 11 PCS. 3\% X 2\% X 10 FT. MAPLE FLOORING
LEGS and RAILS - 5 PCS. 2\% X 4\% X 6 FT. YELLOW PINE
CROSS RAIL - 1 PC. 1\% X 4\% X 2 FT. YELLOW PINE
TRAY - 1 PC. 1\% X 8\% X 6 FT. WHITE PINE
TRAY BACK - 1 PC. 1\% X 6\% X 6 FT. WHITE PINE
TOOL RACK - 1 PC. 1\% X 2\% X 6 FT. WHITE PINE

HARDWARE LIST

16 - 3\% X 6\% SQUARE HEAD MACHINE BOLTS WITH WASHERS
6 - 3\% X 4\% 1/2" LAG SCREWS
3 - 1\% X 17" CARRIAGE BOLTS
12 - 1 1/2" NO. 10 FLAT HEAD WOOD SCREWS
1 - WOODWORKERS' VISE WITH 10" SAWS
CERTAINLY one of the first things you will need in a shop is a workbench. Since your skill at woodworking may be of no high order at this stage of the game, it is best to make a simple yet sturdy type, reserving the cabinet jobs and streamlining for a later date. A good utility bench is completely detailed on the opposite page. This features drawbolt construction, a style you can knock down in a few minutes if you have to move.

Begin by making the frame. The lumber used is stock building lumber and can be yellow or white pine, oak, or whatever is available in your locality. Cut the various pieces to net length. Carefully mark the drilling lines for the leg-to-rail bolts, as shown in Fig. 3 on the opposite page. Use an expansive bit to drill the big 1 1/4-in. hole which houses the nut at each joint. Some of the bolt holes can be drilled on the drill press, but others may require working with a brace and bit, Fig. 7. Assemble the two end frames first. As shown in Fig. 3, there is a metal or wood dowel pin at each joint to prevent the wood from twisting. This should be a tight fit in one member, but loose in the other. It is best to assemble the frame with bolts at first, and then drill and fit the dowels. As a matter of fact, the dowels are not absolutely essential and may be omitted if you desire.

The top is made from maple flooring with the tongues cut off. This is an easy job for the circular saw. Next you will drill the crossholes for the 17-in. carriage bolts. This is a job for the drill press, and you should use a fence and stop block so that every piece is drilled the same. Make a dry trial assembly, then put the whole thing together with glue and the three bolts. The top is fastened in place with four lag screws, as shown. The tray and tool rack are then added to complete the job. Smooth and sand the top to a nice slick finish and give it several coats of floor wax. The rest of the bench can be enamelled to match your machine tools or, if you use hardwood, it will look well with a bright shellac, varnish or clear-lacquer finish.

The simplest type of bench construction is a nailed structure with plain butt joints. A design of this kind is shown in Fig. 8. The frame is stock building lumber; the top is made from five pieces of 2 x 6 lumber, with the joints splined and glued, as shown. The top is fitted flush with the front legs, and in this position will leave a little of the back legs exposed on which to fasten a backboard. A woodworker’s vise should be fitted to the left end of the top, and the vise should be on hand before you fasten the top in place so that sufficient
projection beyond the end frame can be allowed for mounting.

Workbenches of this style, as well as other designs, can be purchased in knocked-down kit form, ready for assembly. This is an excellent method of building, and the price of the ready-cut parts is but little more than what you would pay for raw lumber.

Probably the most practical type of bench is the cabinet type with drawers, as shown in Fig. 10. Besides providing an ample working surface, this bench has drawer room for all the tools and gadgets which are commonly needed for bench work. A job like this represents a goodly amount of work. But it is all straight sawing and mortising, which is not difficult if you have had a little experience in wood joinery.

As in all jobs of this type, the two end frames are made up first, following the dimensions and construction shown in the end view, Fig. 12, and details A and C, Fig. 14. This is a mortise-and-tenon, pane-frame construction, with the framing members of stock 2-in. lumber and the panel ¼ or ⅜-in., 3-ply.

A similar frame, except that it is not rabbeted for panels, is used as a center partition in the framework. This is notched for the top front rail, as shown in the detail at B.

After the three frames have been made, the bench can be roughly set up with the long rails. At this stage you will begin to see the construction and will not have to depend too much on the drawing. Half-lap joints are used to assemble the drawer rails and uprights.

The ends of the drawer runners are stub-tenoned and set into a groove cut on the back edge of the drawer rails, as shown in the detail at D, Fig. 14. The construction
at the back is the same as at the front. It is important that all similar drawer openings be kept the same size so that one machine setup on the circular saw can be used for making all of the 18 small drawers required.

The top is 2-in. stock, which can be assembled with through dowels, as shown in Fig. 13, or bolted or splined, if desired. Drawers can be made with an overhanging lip or plain to suit; they should have at least \(\frac{1}{6} \)-in. clearance at each side and at the top.

If desired, the cabinet-type bench previously described can be made up in a shorter model. It makes an attractive small-size if the end frames are spaced about 5 ft. apart, overall measurement. In this case no center partition would be used. The frame would work up nicely with nine small drawers and one long drawer at top, the same as one half of the longer bench shown in Fig. 11.

Benches of this type look best if worked in hardwood and finished brightly. For that matter, a bright finish would be quite satisfactory on white pine. The softer wood is, of course, much easier to work and has sufficient strength for the purpose. Nothing but select hardwood should be used for the top, however, since this takes a lot of punishment.

Getting back to simpler designs, Fig. 15
shows a good utility bench using 4 x 4 stock for the legs. These are cut away on two adjacent edges to take the 2 x 6-in. timbers used for the top rails. The bottom rails are notched into the inner side of the legs, as shown. Parts are joined with waterproof glue and 3 1/2-in. No. 14 flat-headed screws. A lower shelf can be provided as shown, with or without a backing board, or arranged in any other manner to suit your needs.

Neither the top nor the frame is dimensioned for length and width, as the bench can be made any convenient size using the same plan of assembly. In a small size, a 3/4-in. plywood top is satisfactory, but if the top is longer than 60 in. or wider than 24 in., 1-in. plywood or heavier should be used. The top is screwed in place before being covered with the 1/4-in. hard-pressed board. This is put down with linoleum cement. The front edge is covered with plastic or metal trim, while the remaining edges are fitted with quarter-round strips butted against the side pieces.

Flat drawer pulls of the type
shown in Fig. 16 are excellent for workbench drawers. All you have to do is cut a hole in the front of the drawer big enough to admit three or four fingers. For a small, light drawer, a single hole to admit one finger is usually sufficient. The wood strips covering one half of the hole are not essential, but they do help to keep out dust. If it is desired to make the opening dust-tight, a strip of sheet metal or thin wood can be applied to the inside of the drawer.

Under certain circumstances, you may have to resort to a folding type of workbench, as for example if you have an auxiliary workbench in the garage. The style shown above will be satisfactory and, when folded, will be completely out of the way. The back of the bench, which is 2 x 8-in. stock, is screwed to the studding, and a brace for the top is screwed to the back. As can be seen from the illustration, the top and the front legs are hinged in such a manner that the top folds against the wall and legs fold against the top. The bench is held in the closed position by a cleat, A, that is screwed into the studding. The diagonal brace which extends from the back to the horizontal cross member bracing the two legs is hinged at the back and connected to the cross member with a hanger bolt and hasp. The hasp is cut as indicated in the lower right detail. Square-headed bolts fasten the horizontal brace to the legs. As a light, foldaway bench for the basement, this unit can be used to good advantage as a drawing board or finishing table.

Most benches are commonly used in connection with a tool panel. It is important that the tool panel be kept separate from the bench. The reason for this is that when you hammer on the bench, you will cause vibrations in an attached tool panel which may dislodge tools. This is particularly troublesome if the tool panel has a narrow shelf holding small cans of paint or loose tools. Some of the designs shown have an attached panel or backboard, but the separate panel is the best. A 1/2-in. space is enough between bench and panel—all you need to do is break the contact.
"Rubber-Tired" Rollers Hold Saws in This Rack

When hung over the workbench, it is nearly as easy to replace the saw in this rack as it would be to lay it on the bench. While holding the saw by the handle in a natural position, you simply push the end up into the slot where a rubber-covered roller grips it firmly. A saw is removed by a slight upward and outward motion. The rack can be made to accommodate as many saws as desired, and consists of a plywood back to which are screwed guides shaped as shown. Rollers housed between the guides are held in place by a plywood cover slotted at the lower edge as indicated. The rollers are slices cut from large hose and fitted with wooden plugs.

Seat Fits Under Bench

Here's a seat for your bench that is ready when you want it yet out of the way when not in use. The support is a 2 x 4 running the length of the bench. The seat is 8 x 12 in. and is bolted to another 2 x 4. A triangular piece of flat iron bears against the bench top to support the unit.

Hinge Serves as Secret Lock On Workbench Drawer

This simple drawer lock defies detection mainly because it is hidden and also because the nail which operates the lock appears to be one of those used to fasten the bench top to the legs. As the detail shows, the lock, consisting of a strap hinge with a nail release pin attached to one leaf, is recessed into the underside of the bench over the drawer. One leaf of the hinge is screwed flush in the recess and the other leaf is left free to swing downward to form a stop, which prevents the drawer from being pulled out. The nail release pin is attached loosely to the hinge with wire and a washer. Should the nail become detached from the hinge, a shallow notch cut in the top of the drawer in line with the hinge at the time the lock is installed, will provide clearance so that the drawer can be withdrawn. Several decoy nails should be driven where shown.
You literally “set up shop” when you roll out this compact little workshop. Combining a chest and bench in one, it’s the answer to the apartment “crafters’” prayer for a convenient place to work and store tools.

Chain-supported drop lid lowers to form a handy lap-type bench top when chest is open. Compartment at rear affords storage for handsaws, square, level, etc. Drawers care for countless small tools.

Apartment WORKSHOP

DOES THE kitchen table serve as your workbench, much to the annoyance of your wife? If so, this article is especially for you. It shows how you can have a workbench and tool chest all in one within the confines of a compact trunklike box. Supported by a folding detachable sawbuck stand, both parts of this workshop can be stored in a minimum of space. It’s the perfect setup for the man who resides in an apartment, or the owner of a basementless house who likes to tinker, build models or keep the household appliances in repair. Everything is at hand when you want to “set up shop” and, when you’re through, tools can be quickly packed away for another day. It’s as simple as that.

The photo below shows how the box is divided into compartments and fitted with four drawers for regimenting small tools, parts and materials. Features of the box are a separate compartment at the back for storing two handsaws, and a lid that drops down to provide a bench top. The drawing on the opposite page details construction. Crate lumber will do for the box, although pieces of plywood are best for forming the compartments and drawers.
GOOD furniture makes a lot of difference in the homeshop—you can have a raft of tools, but you won't get much done unless machine accessories, hand tools and hardware are housed in suitable cabinets and tool panels. And like other furniture, these pieces should fit into the decorative scheme.

If you will analyze your own or the other fellow's shop, you will find it is not a lot of power tools which make an attractive shop, but rather the tool panels and cabinets. On both counts—utility and appearance—it is almost impossible to overdo this phase of homeshop planning. The only way you can overdo it is to tackle it all at once.

Take your time—you won't be buying a dozen power tools all at once, and neither will you do a really nice job of furnishing until you are an experienced crafter. In the meantime make a place for everything you use, however rough. Then you won't spend half an evening looking for a hammer or wondering where you put that box of 1/4-in. No. 6 flat-headed screws. We'll tell you how it's done on following pages.
TOOL PANELS keep pace with your collection of tools, and it is likely that a couple boards of shiplap cleated across the back will do for a starter. A really nice panel can be made from a single sheet of 4 x 6 or 4 x 8 plywood in 3/8 or 3/4-in. thickness. The panel in the photo above might be used without the framing. It shows a typical collection of shop tools and methods used in mounting them.

The plywood used for any panel preferably should be water-resistant, especially if your basement is at all damp. Some ordinary plywood and especially lumber-core veneered sheets have a tendency to come apart when exposed to the humid atmosphere of the average basement shop in the summertime. On the same subject, it is a good idea to cleat the back of the panel so that it sets out a half inch or so instead of being in contact with the wall.

Mounting can usually be made with nails or screws so located as to hit slight cracks or openings between the cement blocks. For a more professional job you can bore holes in the cement with a star or carbide drill and then insert toggle bolts. Four bolts fitted in this manner will hold the average panel neatly and securely. Various types of patented anchors also are available. These hold firmly when driven into suitable holes drilled in the concrete and, in turn, provide a secure mounting for nails or screws. Another much-used method somewhat similar to the patented anchor calls for drilling holes in the
concrete as before and fitting the openings with drive-fit wood or rawhide plugs which take the panel mounting screws.

Assuming you have a collection of tools ready for mounting, the best system is to plan and fit the various units before the panel is mounted. This permits access to the back of the panel, which is often useful in mounting racks and special brackets.

The simplest tool mounting is the familiar pair of nails. However, you can do the job much more neatly with wood or metal dowels. Usually you will have one or two racks with holes or slots. The rest of the board depends on your own tools and your own layout ideas.

The panel will be clean and stay clean if you sand it smoothly and give it a coat or two of shellac or paint. This should be done before the board is cluttered with pegs and racks. Consider lighting and wiring—quite often a fluorescent tube over the panel sets it off, and certainly a bench tool panel can stand a couple of outlets.

Half-round or back-band molding nailed to the edges takes off the raw appearance of the plywood edge. The back-band molding is the more attractive of the two. You can buy this at any lumberyard handling trim lumber. Gum banding around a birch or fir panel gives a two-tone, light and dark effect which is pleasing.

Panels in walls: If your shop has a wooden partition, good use can be made of the space between the walls, as has been done in the shop illustrated above. The same idea can be worked in new construction by erecting a dummy wall in front of the old wall.

If your shop is in the basement, the wall selected for this should be an inside surface in order to eliminate possible dampness. This applies especially to cabinets consisting of a face and shelves only, no back. In most basements there are suitable areas around the chimney or under the stairs which can be blocked off in this manner, using just a front or front and end and allowing the existing walls to make up the rest of the shop enclosure.

Semi-closed tool panel: The partly enclosed tool panel is somewhat neater than a plain panel and offers better protection from rust and dust. This construction is not suited for a bench tool panel because of the overhang, but it makes an ideal installation for the lathe, shaper or drill press. A typical job is shown in the photo at the top of page 76, and the construction is shown in the drawings at the left. Most of the work is done on the circular saw, with the exception of the
rounded corner pieces which are turned up four-square in the lathe. Excess wood at the ends allows fastening for turning and also provides a square base for the doweling operation. The 5/8-in.-plywood back should be fitted with the necessary racks and pegs before the assembly is made. A unit of this kind is nice with a fluorescent lamp across the top fitted to the back of the top rail, or a pair of lamps fitted to the backs of corner pieces. Filament lamps, either regular socket, tubular or lumilin, can be used and have the advantage of more heat, which is useful in evaporating moisture from the surrounding air.

Round-cornered cabinet: Rounded corners will give any cabinet a more attractive modern appearance. The design shown offers plenty of space for hardware and general storage and is a worth-while piece of furniture for any shop. The construction, while offering plenty of work, is simple if you have had an experience at all in this type of circular-saw joinery. Start this job by making the six drawer frames for the top section, and the single frame for the lower section. Use a stop block or stop.
rod when cutting identical lengths, and use a fixed setup for all other circular-saw work involving duplicate cuts. Sides are made up next and nailed to the ¼-in.-plywood back, after which the drawer frames can be fitted in place. As shown in the drawing, the frames are simply butted in place and held by nails, but it would be worth-while to groove the sides about ¼ in. deep to provide housed joints. Another alternative would be to nail cleats to the sides to support the drawer frames; this does not interfere with the drawers and will not affect the dimensions as given. Other parts are added in whatever order you like.

All of the corner members are given a ⅛-in. or larger round, running the work on the circular saw with a molding head or on the shaper with a shaper cutter. The base is the modern setback type. Doors are ¾-in. plywood, fitted with bullet friction catches and closing on a shiplap joint, as shown, for a good dust seal. The drawers are conventional construction, using ¾-in. stock for the fronts and rabbeting to take the ½-in. sides. Care should be taken in building the cabinet to get all drawer openings the same size so that any drawer will fit any opening.

The nicest finish on a job like this is natural wood with two coats of clear varnish or lacquer. With this in mind, maple or birch plywood would be first choice for the sides. The cabinet shown in the photo is all white pine with finishing nails set and holes filled. The finish is light with the exception of the setback base, which should be painted some dark color so as not to show scuff marks.
Standard cabinets: The stock design for a fully enclosed tool cabinet is something on the order of the unit shown at the top of this page. This is a good size and style of cabinet to make for a starter—it holds your starting collection of tools and later on can be converted into a hardware storage cabinet. The doors are mitered at the corners and grooved all around to take a ¾-in.-plywood panel. The rest of the construction is plain butt joints. For doors, ¾-in. plywood can be used. Besides looking better, plywood simplifies the building.

Plain cabinet construction in larger sizes is well-illustrated by the series of drawings below. The base unit is made from stock 1 x 12 boards, grooving the sides to take the shelves, as shown. A plywood back can be added by rabbeting the sides or can be simply butted between the two sides. The second sketch shows a bench-height unit added, with the top overhanging about an inch.

Further additions and variations are shown in the two right-hand sketches. Any of the units will make up nicely in white pine with simple butted and nailed joints. If desired, the shelf can be mounted on cleats nailed to the side pieces rather than using the housed joints shown. A cabinet like this can be made quite attractive if face strips about 2 in. wide are added to conceal the cleats. Avoid knotty white pine for shelves unless it is hand-picked—large knots in the center of a board will cause sagging.

Shown here is a small, fully enclosed tool cabinet which is ideal for the beginning home-workshop proprietor. It will hold the initial supply of tools, and when it has been outgrown, can be converted to a handy storage cabinet for hardware and other workshop items.
IF WORKSHOP AREA is limited, especially when it comes to convenient storage, you will want this little roll-away shop cabinet. Mounted on four casters, it is moved effortlessly wherever desired and tucked away in a corner when not in use. Sides of the cabinet consist of storage doors which swing outward for easy selection of small parts.

Although the original cabinet was designed purely to hold small parts and used in addition to other shop facilities, the cabinet can be adapted to serve as a self-contained shop by fitting one or both doors as tool panels and using the inside shelves for the small parts and supplies. When the doors are used for small-parts storage, as detailed, two types of racks or bins are mounted on them. One door is fitted with slanted shelves for boxes of bolts, screws, etc., and the other door is lined with rectangular cans for holding unpackaged parts.

The doors are held closed with a pair of self-locking latches cut and bent from sheet metal. Each latch is drilled, slotted and notched, and then pivoted to a door with a bolt or screw. A second screw driven through the slot holds the latch in locking position, while the notched end of the latch engages a screw driven into the cabinet front.

Illustration above shows how the sides of the rolling cabinet swing open for easy selection of small parts.
YOUR HOME WORKSHOP begins with a plan. Even though you purchase only one small power tool at the outset, there must be a bench or stand on which to place it, there must be floor space for the bench and also space around the bench or stand in which to operate the machine. And there you are—space and place come first, then the machine. Already you have a plan, even though it may not be drawn on paper with all the work areas and placement of the power tools calculated and dimensioned beforehand. It must be a casual plan, like the shop pictured above. Homeshops cannot be arranged with the dull, blueprint precision of a factory production line. There are very good reasons why. One of them is that the schedule of the homeshop may call for the making of a one-evening project, such as a pair of book ends or a simple shelf, and also a chest of drawers to be done in spare time over a period of months. Obviously then, the saving of seconds in the handling of materials and in machine operations is not a matter of primary importance. Suppose you do take a little longer to handle and cut a board to length and width than would be permissible in commercial shops where minute multiple savings in time add up to a lot of money earned. It's your own time, isn't it? And nobody's paying you for it.

"Home workshop" is just another name for a recreation room. Tight production schedules have no
place in it. Rather it's a place for relaxa-
tion, a place for planning new and interest-
ing projects, a place for learning new things
about the operation of small power tools.
The shop pictured on page 5 illustrates the
point. Study it carefully and you won't see
such evidence of a calculated plan. Of
course, the lathe has been placed under an
accessory cabinet, the drill press has been
cated in a corner where it usually be-
ings, there's a bandsaw out on the floor
here there's plenty of room all around it
and it's certain there's a circular saw
around somewhere. All this is just part of
a casual plan, a corner of a homeshop in a
basement, clean and neat as a pin. But the
projects pictured show that work, craft-
work, is done in the shop. Another impor-
tant thing about this picture is that there
are two people in the shop who give every
evidence of thoroughly enjoying them-

Shop space available is one thing that's
important in planning a homeshop. Com-
pare the plan in Fig. 1 with the one in Fig.
2 and you'll see that the first floor plan is

Diagram Description:
- **CABINETS**
- **SCROLL-SAW**
- **17" DRILL PRESS**
- **DISK SANDER**
- **GRINDER**
- **14" BAND-SAW**
- **6" JOINTER**
- **10" TILTING-ARBOR SAW**
- **12" LATHE**
- **WORK BENCH**
- **15' X 20' FLOOR PLAN**
- **CABINET**
- **SHAPER**
- **BELT SANDER**
Scribed arcs on the plan above represent the minimum allowable space around each machine. When areas overlap, total working space will be somewhat restricted. However, this simple method will help you arrive at the space required for a given number of machines. Just make a rough plan and scribe arcs around the machines on the approximate radii given below. Note unrestricted space on the shop plan detailed at the left.

Comparatively spacious while the other places the maximum number of power machines in the minimum of floor space. The curved lines drawn on the plans indicate the minimum working area required about each machine. In the plan above note that the working areas overlap. Wherever the working areas overlap, the general convenience and workability of the shop will be restricted proportionately. A reasonably accurate rule to follow when laying out a homeshop on paper is to allow space representing 36 in. in front and on both sides of machines that can stand against the wall. Such machines include the drill press, lathe, sander, shaper and grinder; also the bandsaw, with some exceptions. Allow a 48-in. working space around a circular saw and jointer for good measure.

It should be understood, of course, that this is not a precise and orthodox procedure. Neither does it cover every contingency. For example, in the plan in Fig. 1, should you have to drill holes at the center of a long piece of stock you would have to move either the drill press or the scrollsaw. Some home craftsmen mount power tools on heavy casters or dollies so that they may be easily moved about the shop. Such an arrangement is especially handy where space is restricted. However, you'll find that this method of figuring space saves time.

Now, if you draw the plan to a fairly accurate scale of the room you intend to use as a shop, you can quickly figure the amount of working space required for a given number of power tools. Try to have plenty of working space in front of the workbench, for here's where you'll precut a lot of stock to rough lengths with hand tools. One should keep in mind also that power tools in the popular homeshop sizes have work tables that are comparatively small. The largest saw table practical for the homeshop is about 36 in. wide with the table extensions, or grids, attached. Other machine tables are much smaller. The average homeshop bandsaw has a table measuring about 14 x 14 in. Stock longer than 48 to 60 in. in length cannot be worked effectively on tables of this size. However, the maximum length of single pieces of stock used in the average cabinet seldom exceeds 60 in.
DISPOSAL of light, fluffy shavings from a jointer is aided by this neat shavings box. As pictured at the right, it works just like a tilting flour bin and is easily removed from the jointer stand for emptying, thus keeping the shop clean and reducing the fire hazard to the minimum. The back, bottom and sides are made from plywood and the front from solid stock. Note that the upper ends of both sides are cut part way across the width on a 10%-in. radius, the curved cuts ending in $\frac{1}{4} \times \frac{1}{2}$-in. notches. The back sides of the notches form stops. The front piece is rabbeted on both sides and the lower corners are notched as shown. In assembling, the joints are fastened with glue and small nails or screws. After assembly, a cleat is nailed and glued to the bottom as in the underside view, below, and two small blocks are glued to the bottom in the position indicated. The box is supported by a $\frac{5}{8}$-in. metal rod as in the lower right-hand photo. To place the box in position in the stand, slide it inward on top of the supporting rod. Then tilt it outward until the stops strike the vertical sides of the top piece of the stand. Then raise the box slightly so that the blocks on the bottom will slip over the rod. To remove the box simply tilt it outward until the stops engage the stand. Then raise it slightly and pull outward at the bottom.
Test power tools for vibration with a full glass of water. If none spills over with power on, you've got the problem licked.

NOISE is one of the minor nuisances of the homeshop, and what you do about it is largely dependent on complaints from other members of the household. Of course, there's no sense in having the place sounding like the hammers of Hades, so you should employ a little direct action to hold it to a minimum.

You can make almost any machine less noisy. You do it by eliminating vibrations. A beautiful and simple example is the bandsaw; work it on three legs on a rough floor and it will clank like a slow freight; give it a shove to ride level on all fours and it will be as quiet as anything. A like, but more complex, problem is a metal lathe.
which can be made a smooth-running, quiet performer if you go over it carefully to see what rattles. Tight belts on motors are often the source of an annoying, thudding noise—check every machine at this point, especially if you use a floating drive.

All machines which tend to rattle should be cushioned on rubber. A good insulator for this purpose can be made from two nested rings of plywood with rubber sandwiched between, as shown in the drawing on the opposite page. Rubber heels can be bolted to stand legs. A compressor can be silenced to a weak pop by mounting it on slings of old inner tube. Cushions are not satisfactory on machines which must be moved frequently, and in this case the insulation should be applied between machines and stand rather than stand and floor. Insulating both points is good practice—the jigsaw on the facing page is rubber-mounted on the stand and is cushioned again at the floor.

A third noise eliminator is the simple business of closing the basement door—but tight! A double door is better if the arrangement of your shop permits. Anything else you do in the way of soundproofing comes under the heading of new construction. Several ideas are shown in the drawings at right and are self-explanatory. The problem to lick, of course, is the ceiling, especially if it is a single thickness with plenty of ventilation. You can make a world of difference in the volume of noise that filters upstairs by installing any kind of ceiling in the basement shop. There are many kinds of building boards provided for this purpose, some of which are sound absorbers as well as sound barriers. A new ceiling can be further soundproofed by using an insulating blanket in the manner shown at top of the drawing. A hung ceiling—as in the second sketch—is supposed to be the very best in soundproofing, but obviously it takes a bit of work. Staggered studding, which is the same idea, is more practical and can be installed where needed.

If your shop is in the attic or similar location, the soundproofing is, of course, concerned with the floor. A fair job can be done by simply cushioning all machines on squares of 1-in. insulating board. For a really good soundproof floor, a subfloor of 1-in. insulating board should be put down. Over this is placed 1 x 2-in. strips, nailed through to the wood underneath. On top is laid regular flooring covered with linoleum. This makes a barrier, an absorber and a dead-air space, all of which combine to reduce noise to the minimum.
IN THE BEGINNING, the average crafter has no need for special homeshop wiring—you start with one or two power tools and you plug them in at existing outlets. As your shop grows, you will start using two-way plugs, then three-ways, until finally the whole thing is a headache and you decide to do the job right.

Wiring a homeshop is fairly simple and demands only a little common sense. The general idea is to run in two new circuits, one for the lights and one for the power tools. The double circuit avoids possible dimming of lights when motors are switched on and also maintains the lighting system if you blow a fuse on the motor circuit. The starting point for the new wiring is at the existing fuse box. This may be any of a dozen different styles, a typical box being shown in the left corner of the diagram on this page. This is a three-wire power supply for 220 volts, but is used only for four 110-volt circuits. The new circuit is run in with No. 10 wire, running the white wire from the ground bar, and the black or “hot” wire from any convenient point beyond the main 30-amp. fuse, as shown.

This power line runs to a separate two-circuit fuse box or you can use one of the popular quick-lag breakers. A breaker is a thermal switch which snaps off when the wires get too hot—you correct the cause for the “blow” and then reset the switch. The proper size of breaker to use is a two-circuit with one line set at 15 amps, and the other at 20 amp. The 15-amp. circuit is used for lighting, and is run in with No. 14
Ceiling globes and reflectors provide this shop with excellent lighting. A special feature is the trolley duct, which allows moving outlets. The diagram at the right shows wiring details of a surface raceway wire. The 20-amp. motor circuit uses No. 12 wire.

Wiring cable can be any of the styles shown on first pg. Sheathed cable is popular and is easiest to install, but other types are more permanent and much neater. The surface raceway makes a neat job of conveyance. This can also be obtained in convenient lengths from 1 to 5 ft., ready-wired, and with built-in outlets every 6 inches. A trolley duct, as shown in photo above, allows the various lights or receptacles to be Plenty of outlets are provided in the basement-shop wiring setup diagramed below. Photo at lower right shows corner of a shop wired in this fashion.
pushed to any position as needed. However, most crafters settle for the less-expensive sheathed cable or armored BX, plus duplex receptacles as required.

In all homeshop wiring, whether using rigid or metal conduit, the structure of the room determines to a great extent the procedure followed. Usually there is a way to feed flexible conduits through or around ordinary obstructions, but sometimes it will be found impossible to run conduit to certain locations. Such situations call for surface conduits, sometimes called metal molding, as shown in the right-hand diagram.

Lighting can be direct or indirect, incandescent or fluorescent. The average shop usually features a combination. The main light should be a 150-watt bulb, and should be on the house circuit, controlled by a switch at the top of the basement stairs. Other 150-watt lamps can be installed as needed, and should be fitted with suitable reflectors or domes. One of the most popular reflectors is the turnlox RLM dome with a 14-in. dia. for 150-watt bulbs. A 12-in. dome is used for 75 or 100-watt lamps. The turnlox construction permits removal of the reflector and lamp as a unit with a quarter turn of the reflector. The top of the unit can be fitted with a hook so that the lamp may be pushed along a mounting wire.

Fluorescent light is excellent, and two 40-watt tubes in a reflector will give an abundance of light at lower cost than filament lamps. Popular auxiliary units are 150-watt spot and flood lamps built into a hard glass shell which supplies the reflector. One or two lamps of this kind, suitably placed, will provide intense illumination for critical machine work. A study of any large department-store catalog will acquaint you with many of the various lamps, reflectors and wiring devices available.
Sheet iron, tin cans and scraps of flat iron are utilized to make the indirect-lighting fixture illustrated above. Below: An old automobile-headlight frame serves further service as a flush-mounted ceiling fixture.

In order to get a soft, evenly diffused light, the reflector and the shields should be given several coats of white paint.

If your basement shop has a finished ceiling of wallboard or plywood, practical light units made from auto-headlight frames can be installed in a flush mounting as shown in the illustration at the left. Cut an opening in the ceiling about the same diameter as the front of the reflector. It will then be necessary to make two shallow saw cuts opposite each other so that the reflector can be pushed through the opening, the saw cuts permitting passage of the rim. As shown in the section drawing, the back of the reflector is cut out so that it will fit over a standard porcelain socket. The installation is given a neat finish by screwing the lens and frame in place. When the lamp burns out, it is easy enough to unscrew the frame and change bulbs. A light of this kind gives a concentrated spotlight effect and is most useful over the lathe or bench saw. The lamp is controlled by a wall switch.
This handy table costs little, yet is rigid enough to be used as a model-maker's bench or a support for long work. It is useful in small apartments, for it can be taken apart by removing eight wing nuts, and stored flat behind a door or in a closet.

ALL PARTS 3/4" HARDWOOD

LEG

33"

1 3/4"

1/4"

LEGS

CARRIAGE BOLT

SPACER BLOCK

HARDWOOD CLEATS SCREWED TO TOP AND BOLTED TO LEGS
Fire is the secret of working ornamental wrought iron—a red-hot piece of iron can be bent easily to almost any shape. While the traditional heat source for ironworking is the open forge, excellent results can be achieved with an ordinary liquid-fuel hand torch. A torch, a hammer, a drill and some rivets are all the basic equipment needed. Figs. 2, 3, 4, and 5 show a few examples of the type of work that can be done either with the torch or a small forge.

The metal: Old-fashioned wrought or puddled iron is no longer manufactured to any great extent because mild steel is nearly identical to it and much less expensive to make. The main feature of wrought iron or mild steel is that it contains only a trace of silicon and carbon. Such a material is tough, malleable, bends easily and welds beautifully. Unlike carbon steel, it does not harden when heated red hot and plunged into water. Some of the many stock shapes available in mild steel are shown in Fig. 6. The rectangular shape with rounded edges, usually called band iron or strap iron, can be purchased at many hardware and farm stores, while complete iron stocks for craft work are available from
ROUND WORK STEEL BAR FORMING A RING

WORK CUT OFF

FORMING A RING

HARDWOOD BLOCK

SHOULDER BEND

QUARTER TURN

1½ W

HALF TURN

SINGLE TWIST

MAKING A LONG TWIST

TAP WRENCH
craft and metal-supply houses. The material usually is available in 10-ft. lengths for craft use.

Heating equipment: Many projects in wrought iron can be worked cold. However, band iron over ½ in. thick and rounds over ¼ in. in dia. become increasingly more difficult to bend. An inexpensive liquid-fuel torch is the least expensive and simplest solution. This type of torch will put a red heat on band iron up to about 3/16 by ½ in. and rounds to a ¼-in. diameter. The localized nature of the heat, Fig. 11, makes the torch ideal for angular bending. As in Fig. 12, rod stock can be bent with hand pressure alone after torch heating.

One of the hottest heat sources is the twin-carbon arc torch, Fig. 29. An obvious disadvantage of the arc torch is that you have to wear a helmet and gloves for protection against the ultraviolet and infrared rays. A small arc torch, working on 110 volts, will heat rounds up to about ¾ in. in dia. for angular bending. Like all torches, however, it is generally unsatisfactory for heating a long length of rod.

Most fascinating and satisfying of the heat sources is the time-honored forge, Fig. 1. This is the most flexible, most economical heat source for regular work. And, if you burn smithing charcoal, the fire will be clean and smokeless—practical for use in the basement workshop. A draft connection should be made to a chimney or to a basement window, in the latter case using a low-speed exhaust blower. A typical home-shop forge is shown in Fig. 7. The fire should be deep enough to bury the work yet protect it from direct air from the blower, Fig. 8. The forge will put a red heat on 2-in. dia. bar stock in about 5 minutes. With the forge fire, a large area or a long length of work can be heated uniformly, this being especially important for such jobs as making a long twist in a square bar, Fig. 22. On the other hand, if you want a sharp, angular bend, it is a simple matter to cool the work as desired with water from an oil can.

Basic operations: The basic operations in working with wrought iron are cutting and bending. Cutting is done with a hacksaw or with a chisel or hardie, Fig. 9. A 3-in. bench shear, Fig. 10, is ideal for cutting light stock up to ¼ by ¼ in.

Most of the basic bends are shown in Figs. 12 to 22. One of the most useful bending devices is a bar or a block of metal having one or more holes bored through it. This is used in the same way as the hex bar pictured in Fig. 14. An eye is formed by first making a ring, Fig. 17, and then bending the standing metal with the use of a vise, Fig. 18. Gradual bends of all kinds can
be hammered hot or cold on any type of round anvil or bar, Fig. 20. Single twists with a quarter or half turn are made with a wrench, Fig. 21. In the details, W equals the width of the stock.

Scroll bends: Gradual curves or scrolls predominate all period designs in wrought iron. These curves are made on a bending jig. The jig consists of a purchased or homemade setup of two metal pins around which the work is bent, Figs. 23 to 25. Eye bends can be made directly around the smaller pin, Fig. 25, while large bends are worked gradually with a series of bends, Fig. 24. Large work also can be bent over wooden forms, Fig. 26, a method which is used widely for bending tubing. When a number of pieces are to be bent to the same curve, a handle-and-roller setup, Fig. 27, saves time and assures perfect work.

Fastenings: Ironwork is assembled by welding or brazing or with machine screws, bolts or rivets, as in Fig. 28. Riveting is the most popular home-shop method, and most riveting jobs can be done with the simplest of equipment, as in Fig. 30. Soft-soldering also is practical, although adhesion and strength are inferior to similar work on other metals.

Finishing: The most popular finish for all ironwork is flat or satin black paint. A protective or rust-inhibiting undercoat should be applied as a primer on all ironwork used outdoors. This is not essential for ironwork to be used indoors, but it is desirable to secure better adhesion of the finish paint. Antique iron usually is fire-blackened and then topcoated with paste wax to obtain a soft sheen.
BUDDING YOUNG ARTISTS with musical leanings will have plenty of fun with this xylophone—especially when dad builds it in his basement workshop. It's not intended for professional use or advanced musical reproduction, but it does provide a means of acquiring manual skill and training for young ears in recognizing the notes of the musical scale. The keyboard includes two complete octaves, B to B, and all keys are located on one frame. Building the collapsible leg units and the keyboard frame requires only simple “sawhorse carpentry,” but assembling and tuning the keys call for more time and care. The keys are ripped to the exact sectional size given, but are cut only to approximate lengths from the shortest to the longest. Use selected birch which is dry, straight-grained and sound. Each key must be tuned separately with a pitch pipe, and to do this make the tuning frame detailed on the opposite page.

Then make two hammers, or mallets, by drilling ¼-in. holes in 1-in.-dia. wooden balls. Fit 12-in. lengths of ¼-in. dowel as handles. Locate and drill transverse holes through all the keys as in the side view below. Place each key on the tuner as in the detail and rap it lightly with the mallet. Trim the end of the key about ½ in. and test again. Continue in this manner until the tone is true with the pitch pipe. Keep
the keys in order as they are tuned. There will be some variation in response in keys cut from the same piece of stock, and in some instances it may be necessary to make substitute keys which may be trimmed and tuned to the pitch required. If you take off too much stock when tuning, lay the key aside and use it for the next higher note. When all keys have been tuned, they are strung one by one on a cord running through screw eyes turned into the frame. Join the ends of the cord with a small turnbuckle so that proper tension of the cord can be maintained. Glue strips of felt to the top edge of the frame underneath the ends of each key.
ANYONE with a period type home will appreciate one of these reproductions of old-style lamps. Mounted on a post at your entrance gate, the one in Figs. 1 and 2 is an electrified replica of an old gas street lamp, and can be made of brass or galvanized sheet iron. Brass angle stock is recommended for the frames around the glass, which should be especially sturdy. The top can be cut from a single sheet. Note that the wood post is made up of two pieces, which are first channeled for an electric armored
cable, and then fastened together. The lamp can be mounted on the post by using a disk of heavy sheet metal having tabs on opposite sides. Then the disk is soldered to the lamp bottom and the tabs are bent down over the sides of the post and screwed to it. It may be necessary to have four equally-spaced tabs on the disk in localities subjected to high winds. The top of the lamp can be lifted off for replacing the bulb by removing two screws.

The graceful lamp pictured in Figs. 3 and 4 can be made of galvanized sheet iron soldered together and supported by an iron-pipe standard with wrought-iron bracket. The latter may be riveted or welded. The top of the lamp is made in one piece, as is the frame supporting the glass. The latter is attractive in soft green tint, and is secured with galvanized tabs soldered inside the frame. The bottom swings downward for replacing bulbs. The standard should be set in concrete to a depth of at least 18 inches.

If your lawn is terraced and steps leading off the sidewalk are required, the lamp shown in Figs. 5 and 6 is highly pleasing. The post is a 2-in. galvanized pipe, which supports a wrought-iron bracket carrying the lamp. The latter has a reflector made of galvanized sheet iron. Inside, a steel bracket is secured with eyebolts, also used to hang the fixture, and a porcelain socket is fastened to the bracket. An armored cable is brought up inside the standard.
Inexpensive and easy to build, this Hollywood-type youth bed is just the thing for baby when he begins to outgrow his crib. Except for a headboard panel of $\frac{3}{4}$-in. plywood, the bed is made entirely of solid stock. Over-all dimensions of the bed and the length of the guard rails are not given in the detail as these are determined by the size of the mattress, the guard rails being approximately half the length of the bed. Note that the bed rails are fastened permanently to the headboard and the footboard by mitering the ends and gluing and nailing them into mortises in the tapered legs. After the bed is assembled, a rope spring (clothesline will do) is laced through notched strips of 1×1-in. stock screwed to the sides of the bed rails as well as to the headboard and the footboard. After all nails are set and puttied over, the bed is enameled, using either a two-tone effect or a color to harmonize with the bedroom.
YOUNGSTER'S CHAIR

Strictly in the modern mode, this plywood armchair is easy to make and adds just the right informal touch to a basement rumpus room or front porch. First, saw out the sides and the four pieces for the armrests, Fig. 2, and then cut the bottom and back, and fasten in place by means of cleats, Fig. 1. The armrests are glued and screwed in place. In addition to the bottom cleats, an under-seat brace is required, right-and detail of Fig. 2. When the sides, back and bottom are assembled, the chair is ready to be upholstered. Pocketed springs are used and are covered with padding and a suitable cloth. If foam rubber is available, it can be used instead of padding with good results. Stain the wood and finish with three coats of shellac. Or by way of variety, you might use a colored enamel finish that contrasts with the pattern of the cloth covering.

Benj. Nielsen, Aurora, Nebr.
CHEST-BED

IN SMALL homes and apartments where it is impossible to furnish a room for the child, this combination bed and chest will be of real value, as it serves as a comfortable bed at night and provides storage space for extra blankets, toys and other household items. In daytime, removing the railings and covering the chest with an appropriate drapery converts it into a useful couch. If made higher than shown in Fig. 1, the railings can be removed and set up separately to form a child’s play pen. When used in this way, however, a floor for the pen must be assembled and drilled for pegs to keep the railings in place.

Before assembling the frame, have the springs at hand so they can be measured, as the exact size of the chest depends upon these dimensions. Corners of the frame are dovetailed and glued, with triangular blocks glued and screwed to the underside of the top members at each corner to support the springs. Note that the ends of the chest are built up of tongue-and-groove stock, glued and screwed to the frame. To improve the appearance, the outer edges of these boards are rounded at the top.

Note that the chest is fitted with a partition which is curved at the top to prevent the springs hitting it when they are pressed down by weight of a person sitting or lying on them. Railings are assembled quickly by clamping the upper and lower members together and drilling them both at the same time. The holes should be just large enough to provide a sliding fit for the dowels, these being held in place by glue and small finishing nails driven in from the sides. To prevent shifting of the railings, tapered pegs are fitted in the lower members to correspond with holes drilled at the top of the chest frame as shown in Fig. 2. End railings are also fitted with pegs which slip into holes drilled in the side railings. Hooks and screw eyes lock the railings together.

Doors are hung with hinges having removable pins for convenience in detaching them, in case the edges need planing to make them fit accurately. A stop block at the top and bullet-type catches in the bottom rail hold the doors shut. Or, you can fit them with elbow catches and cabinet latches, if desired. Although the bed is somewhat higher than cribs in general, this gives the advantages of adding to the storage space, Fig. 3, and facilitating making the bed with a minimum of stooping for the housewife. Low railings are also a convenience where the bed is made without removing them. Decalcomania transfers are applied in the center of each door.
INDEX

A

ABC of Color, see also Paint Mixing Guide
color wheel
color harmony
color shading
reflecting

Abrasives and Abrasive Terms, see also
Oilstones
aluminum oxide
bonding materials
crocus
emery
garnet
glomerous abrasive, effect of
grade
grit, size measurement
lime
oilstones
pumice
quartz
rottenstone
rouge, how graded
silicon carbide
structure, meaning of
tripoli
comparative grain sizes
coated abrasive selection

Abrasives and Their Use
removing tool marks
leveling defects
grade progression
waterproof
old work
lubricants
feather edging
between-coat sanding
polishing compounds
power sanding
power sander, how to make
power sander types

Air Compressors, see also Spray Painting
paint spraying
sandblasting
cleaning shop tools
operating forge
used for pneumatic tools
controls
compressor, how to build

Air Conditioning Your Home, see also
Humidifier Control, see also Condensation Control
packaged units, installing

220-volt types
water line to
correct unit sizes
outside temperature, a factor
correct room registers
temperature chart, registers
details, installation

Air Filters – Window
spun glass
honeycomb fiber
electric fan, use with filter
how to build
honeycomb unit, how to build

Agitator, see Developing Tank Agitator
Airplane, see Model Plane
Alarms, see Electrical
Alsatian Chair, see Chair
Aluminum Oxide, see also Abrasives

Aluminum Riveting
patterns of
common types
correct length and upset
holes, size of
holes, drilling
angle of drilling
riveting guns
riveting, clearance for
vise, use of in riveting
holes, countersunk

dimpling bar, how to make

Aluminum Tubing, see also Lawn Furniture
how to cut
finishing
hanging garden, use of tubing in
flower holder, use in
lamp base, use in
condiment holder, use in
serving tray, use in

Andirons, How to Build

Angle Cutting
joining 4 sided hopper
tilt and miter gauge settings
compound miter joint
splined joints

Angular Drilling, see also Drill Press Technique
angles, kinds of
simple angle

equal compound angle
unequal compound angle
drilling line and tilt, determining
work, mounting of
curved work
dowels, holes for
Antennas, TV
necessary height
installations, two types of
how to install
guy wires, how to fasten
Anti-freeze, see Winterizing, Automotive
Antiques, Refinishing, see also Wood Finishing
varnish remover, how to use
proper sanding
shellac, how to use in polishing
Antiquing, see also Wood Finishing
related terms
spray shading, various methods of highlighting
glazing
general technique
Apartment Workshop
how to build
cabinets for
power tools, mountings for
Arbors, Lawn and Garden
formal trellis
gate arbor
construction details
Arbors, see Lattice
Arbors, see Trellises
Arc Welder, How to Build, Part I
transformer details
amperage
wire sizes, winding
winding details
reactor
Arc Welder, How to Build, Part II
jack board for
portable mounting for
accessories for
Arc Welding, How to, For Beginners
auto repairs, use of welding in farm implement repairs
welders, types of
protective clothing
tools and accessories, basic
welding rods, selection of
arc, how to strike
welds, types of joints
Arc Welding Torch, How to Make
carbon electrodes
construction details
Archery — Flight Bows, How to Make
tools needed
kinds of wood used
materials
establishing the pull
Archery — Hunting Bows
sizes
correct drawing weight
how to make
choice of wood
tools required
construction details
arrows, hunting
arrows, how to make
Archery Kits, How to Make
Archery Target, How to Make
Armatures, see Electric Motor
Armchair, see Chair
Art Metal, see Metal
hammering
hand tools
modeling
projects
tooling
Attic Fan, Assembled from Kit
installation of
Attic Space, Conversion to Rooms
sizing up possibilities
joist strength, checking of
complete apartment
bathroom location
closet space
stairway location
stairway remodeling
chimney concealment
daylight and ventilation details
re-using insulation
wiring, heating, and plumbing
Auto Accessories
tissue dispenser
rear view mirror for parking
Auto Air Filter Cleaning, see also Winterizing, Automotive
Awnings
cooling effect of
used to add living space
Awnings, New Types
canvas
wood
bamboo
solar types

B
Baby Car-Cribs, How to Build
Baby Cradles, How to Build
Baby Crib, Built on Closet Door
Baby Crib, Folding Type, Screened
Bait Box, How to Build
Bait Carrier Fastens to Shirt
Bait Net Made from Umbrella
Ball Bearings
kinds of
bearing types
special features of
sizes and numbering of
installation
removal of
cleaning of
Bamboo Projects
bamboo, properties of
how to work with
hanging basket
wall bracket
letter opener
stamp box
parquet paneling
stem vase
large diameter stems
candle holder
rod case
lawn chair seat and back
Bandsaw,
Bandsaw
Bandsaw
Bandsaw
Bandsaw
Bandsaw
Bamboo
Barbecue
Barrow,
Waterproofing
safety
drive
guides,
new windings,
assembly,
final finish, details of
Bandsaw Accessories
table extension, how to make
rip fence, assembly of
Bandsaw Construction
made from pipe fittings
trial assembly
assembly, support for
table mounting
blade guide, details of
plans for
drive mechanism, details of
safety features
Bandsaw Table Pin Removal
Bandsaw Ripping Fence Simplified
Bandsaw, Metal-Cutting, see also Sheet Metal
cutting blades, sizes and gauges
blade speeds, reduction of
blade size, relation to work
tubing and bar stock, how to cut
blade selection chart
blade speed chart
mechanical feed for
thin stock, how to saw
general sawing technique
Bandsaw Techniques
adjustments
cutting methods
the blade, general data
kerf, marks left by
re-sizing lumber
planning for cutting
angle guides, use of
stack sawing
pattern sawing
useful jigs
Bar, see Snack
Barbecue Cart, How to Build
plans for
Barrow, see Garden
Basement Moisture Proofing, see also
Waterproofing
causes of dampness
masonry walls, waterproofing exterior
drainage tile installation
roof and ground drainage
basement walls, waterproofing interior
cement-water paint, use on floors

wall-to-floor joints, treatment of
old floors, resurfacing of
sewers, back flow from
window wells, drainage from
condensation
dehumidifiers
Basket Weaving, How to Do, see also Raffia
tools
materials, types of
weaving principles
projects, forms of
Bas relief, see also Metal Hammering, Art
Bathroom Planning
remodeling, planning of
plumbing, economical
fixture arrangement, basic layouts
important features
lighting and ventilation
heating units for
water pollution, prevention of
fixtures, how to handle
bathtub installation
shower stalls, types of
bath water temperature, control of
lavatories, types of
water closets, operation of
bathroom accessories, installation of
storage space
Battery Care, Storage Type
construction of
operation, principles of
charging of
hydrometer, how to read
electrical circuit, auto
Battery Charging by Motor
Battery Clamps Kept Free
Battery Life, How to Extend
Battery Straps, Safe Removal
Battery Terminal Corrosion Removal
Beach Equipment, How to Make, Part I
floating playpen
aquaplane
diving raft
knock-down pier
lounging chair
sunshade
lazy-back seat
Beach Equipment, Part II
portable dressing room
paddle float
picnic table
utility bag
surfboard
canoe dolly
portable beach pen for baby
frog men swimming paddles
Bearings, see Ball
Bed, see Colonial Bed, see Youth Bed, see
Bunkbed, see Headboard
Bedroom Furniture, Part I
general designing of
basic construction methods
plywood edges, concealing of
framework, covering of furniture feet, gluing of drawers, typical construction

Bedroom Furniture, Part II
bed footboard, construction of headboard, framing of headboard covering headboard bedding compartment, construction vanity, construction of

Bedroom Furniture, Part III
finish, selection of sanding bleaching filler, how to use toning sealing final polish

Bed, Tent Construction

Bench Vise
Bell, see Dinner Bell
Bench Stops, How to Make conventional type made from plywood, adjustable

Bending Brakes, How to Build essential features for light metal for heavy work standard operations box bends work capacity

Bending, see also Plywood

Bicycle Basket, Theftproof
Bicycle Boat, How to Build materials for construction of bicycle parts, adapted to final assembly

Bicycle Delivery Boxes, How to Build
Bicycle Lights, Generator-Operated
Bike, Overhaul Your lubrication drive chain pedals seat wheel bearing air pressure brakes

Bilge Pump Construction
Billiard Table Top, Portable materials for construction details fittings needed

Birdbath, How to Make concrete casting details
Bird Feeders, How to Make
Bird Feeder, Catproof
Bird Houses, How to Build suiting house to species nesting box dimensions

Bits, see Wood
Blast Furnaces, How to Build, see also Metal Casting

uses of materials for construction of burner details accessories used with Blinds, see Venetian Blinker Light Construction Blow Torch, Use and Care operating principle cleaning of reassembling testing valve care tips Blowing, see Glass

Blueprints, How to Read types of lines, meaning of example of line uses center lines section line symbols perspective projection limit dimensions simplification of thread symbols, regular thread symbols, simplified threads, internal and external scales, reduction of types of lettering

Boats, see Bicycle

Boats, see Model Boats
Boats Planked with Plastic preparation removing trim removing old finish fiberglass strips, laying bonding of strips plastic, setting characteristics intermediate sanding additional coating boats suited to 1-piece fiberglass layer, applying squeegee, use of bow, forming technique plastic, curing of chine, sealing of finish sanding trim, replacement of finishes, choice of

Boat, see Duckboat

Boat, see Ice Boat

Boat, see Rowboat

Boat Trailer, One-Man made from pipe and channel lever-hoist, construction of shock absorbers detailed plans of carrying position of boat crossbrace, removable

Bobsled, How to Build, see also Sleds spring-bodied construction details side-swipe prevention finishing details
Bookbinding, How to Do It
leather, use of
cloth, use of
equipment
magazine binding
sewing methods
sections, addition of
dowel stitch, how to make
thread, adding length
tapes, use of
threads, imbedding of
paper, grain test for
paste, how to make
trimming methods
rounding and backing
headbands, how to make
book cover, how to apply
finishing details

Book Ends, How to Make
materials
lathe methods
patterns, use of
bandsaw, use of
fitting parts, technique
weight, how to add
decoration of
assembly of
finishing procedure

Bookends
personalized design of
nature motif
monogram used on
finishes, novelty

Bookcase, see also Colonial Bookcase
rotating feature of
twin storage space in
hardwood use in
assembly plans of
rough finishing method
ball bearing base
casters on

Bookcase Accessory
curtain rod adapted to
compression spring, use of

Bookrack, Fan
Bookshelf
Bookshelf, Lighted

Boomerangs
characteristics of
type of materials
construction
bandsaw, use of
laminated joints in
shaping of
flight diagrams
airfoil blade sections
how to throw

Bowling in Miniature
scale reduction
alley, length of
scoring method
alley bed, how to build
materials

cost construction methods
pins, how to lathe turn
pin weight, matching
finishing

Bowls
wood selection
lathe technique
laminated blocks, use of
color, wood
hardness, uniformity of
patterns, variety of
hollowing core
precautions

Bracing, Home Construction
principle of
stresses
corner bracing
angular nature of
added rigidity
how installed
curing sags
restoring alignment
gambrel roof, bracing for
fastening tips
re-nailing methods
rafter bracing
A-braces

Bracing, see Trusses
Brakes, see Bending Brakes, How to Build,
see Car Brakes

Brass Tapping
profitable hobby
materials used in
tools
designing
design transfer
polishing
finishing methods
framing work

Brass Fireplace Rails
use of pipe fittings
luster, how to produce

Brazing Torches
fuels used in
applications of
construction details
vacuum cleaner, as blower
flame adjustment

Breakfast Set, Folding
accommodates 4 persons
bracket construction
pivot pins
plywood layout
construction details
recess details, wall

Breezeways, see Porches

Brushes, see Generator Servicing

Brushes, Paint, Care of
characteristics of
types of bristles
quality test
suiting bristles to job
breaking in brush
C

Cabin, see Log
Cabinet, see China Cabinet
Cabinets, Corner
 built in units
 concealed lighting in
 suitable finishes for
 studs, locating
 attaching to walls
Cabinet, see File Cabinet
Cabinet-Table Combination
 dovetail joints, use of
 folding top construction
 corner caster type
 hinge attachment
 construction details
Cabinets, Space Saving, see also Storage
Space
 built on closet door
 construction details
 mounting, method of
dust free closure
Cabinet, Curio
 design, colonial
 rabbeting
 bandsawed from stock lumber
 display shelves, open
 enclosed base
Cable Release, see Photo
Cacti, All Season House Plants, Raising
 plant types
 edible varieties
 flowering types
 sources of supply
 safe planting
 injuries, types of
 injured plants, care of
 soil mixture for growth
 containers, selection of
 moisture, control of
 potting, correct technique
 growth pattern
 disease control
 pest control
 lighting conditions, suited to
temperature range
Calking Gun from Insect Spray
adapting nozzles
Camper's Kitchen
layout for compactness
legs, demountable
car trunk, fitted to
Camping Oven
accessories for
positioning reflector
suitable metals for
heat absorption, increasing
folding construction details
hamburger grille
broiling fork
toaster, basket type
Candle Holders
construction of ball socket
lathe turning method
candle socket, making
lathe polishing
felt base
wall mounting
Candle Holder, Antique
tools required
copper sheet, use of
hammering method
drip tray, forming
soldering torch, use of
lacquer finish application
Candle Holders, Turned
use of half-disks
lathe mounting method
finishing details
Candlesticks, Plastic, How to Make
 plastic stock, standard
tools required
Canoe, Build Your Own
Canadian type flat bottom
framework, temporary
patterns, how to make
stems, bending
grain, direction of
keelson, temporary nailing of
keelson, permanent fastenings
gunwales, how to bend
decks, how to fasten
ribbands, fastening
ribs, steaming
steam box, how to make
ribs, fastening procedure
ribbands removed
planks, soaking of
planking, how to lay
thwarts, how to fasten
seat frames, fitting
canvassing, temporary tacking
canvas, wetting and stretching
canvas, fitting at stems
canvas cement, application of
canvas, drying
canvas cement coating
painting and varnishing
keel rub strip, attaching
bang plates, copper
complete plans
Canoe, Rowing Unit For
Car Body Repairs
body putty, use of
paint removal
fiber patches
plastic coating, use of
rips in metal, reinforcing
smooth-filing
metal primer, application of
lacquer, use of
rubbing down finish
polishing compound, use of
Car Body Holes, Repair
Car Brakes, Repairs, Adjustments
brake shoe renewal
adding fluid
bleeding air from line
brake failure symptoms
principle of operation, hydraulic brake shoe adjustment
road testing
Cars, Children's, see Children's Cars
Car Cleaning precautions
proper washing
waxing methods
liquid wax, how to apply
paste wax, how to apply
proper applicator
wax for chrome
interior metal, how to clean
trim, care of
Car Cooling System, see also Winterizing, Automotive
chemical flushing
reverse flush, radiator core
engine jacket, reverse flush
thermostat, checking
water hose, checking
fan belt, checking play
radio core, blowing out
water pump leaking, checking for
Car cribs, see Baby
Car, Electrical System
ignition system
battery
generator
voltage regulator
horns
horn relay
starting motor
ignition coil
distributor
condenser
starting switch
ignition points
light switches
spark plugs
stop light
Car Key Pops Out
ejector
Car Painting, see also Spray Painting
bright work removal
masking tape, use of
dents, removal of
rust removal
cleaner, use of
metal primer, application of
surface leveling
finish, choice of
finish, brush-applied
finish, sprayed
spray gun precautions
wax, use of
Car Springs
broken spring, causes of
broken spring, replacement
broken spring, repair of
jack, proper use of
blocking under frame
leaves, aligning of
spring position, checking
spring clips, use of
spring shackles, checking
tips on spring care
lubrication
Car Spring Inspection
locating broken spring
shackle position, incorrect
rubber bumper damage
helper springs, position of
shackle, frozen
wrapped spring, causes of
bushings, replacement
spring leaves, ends cut
center bolts, shearing of
clips, broken
front spring, effect on alignment
shock absorbers, relation to springs
Carburetor, see Gasoline Mileage
Cards, see Christmas Cards
Cars Kept Easy Riding, see also Shock Absorbers
springs, purpose of
lubrication
metal fatigue
A-bars
camber angle
shims, used on springs
front wheel re-alignment
coil springs, shimming
chassis grease, use of
fabric liners
rubber buttons, use of
clearance, checking
Car Starter
principle of operation
Bendix spring
starter gear
flywheel gear
commutator
armature
field coil
solenoid, function of
contacts, cleaning
trouble shooting
maintenance procedures
Car Wheels, see also Tires
bearings, type and care
failure, causes of
bearing adjustment
bearing lubrication
bearing replacement
wheel removal
reassembly
wheel alignment
wheel toe-in
wheel balancing
Cars, see Children's
Cars, see Used, How to Buy
Carbide Tools
qualities of
cemented carbide
extra hardness of
use of
grinding carbide tools
hand tools, use of
lathes, tools, use of
Card Table, How to Make, see also Table Tops
extra top, folding
hexagonal form, cut from plywood
materials needed
construction details
plan
finishing
Cart, see Barbecue Cart, see Garden Cart, see Tea Cart
Carving, Use of Power Tools For
tool bit for power carving
hand held units
form-reproducing tools
wood carving
plastic carving
leather carving
vibrator type power carver
glass, how to etch
Carving, see Chip
Carving, see Wood
Casting, see Flagstone Casting, see Wax Casting, see Metal Casting, see Plastic Casting
Catamaran
materials required
detailed plan
rudder, foot operated
stability of design
use of inner tubes
finishing
use of paddle
Caulking, see Rowboat
Cedar Chest, How to Build, see also Storage Space
materials list
detail plans
lid bracket
tray supports
rubber gaskets
drawer slides
plywood or solid cedar
Cement Mixer, How to Build
auto parts, how to adapt
welding details
barrel type hopper
how to operate
differential crank unit
Ceramics, Equipment and Techniques, see also Figurine Painting
pottery, methods
casting objects
throwing on wheel
terminology
general procedures
hand tools required
a home kiln
kiln furniture, meaning of
sources of material supply
preparation of clay
clay, types of
coloring
pottery forms
casting procedure
throwing procedure
potter's wheel, how to use
potter's wheel, how to make
pottery kiln, how to make
correct temperatures
clay storage
clay, wedging of
wedging board, use of
slip casting, how to do
overlay decoration, how to do
Chair, Alsatian
scrool sawing back
seat mounting
assembly
antique or natural finish
Chair, Arm
squared pattern, use of
materials, stock size
parts, cutting of
spindle details
finishing technique
Chair, Modern, see also Upholstering
plywood frame, how to make
joints, gluing
plastic resin glue, how to use
cord used for springs
finishing of plywood
Chair, Double Duty Lawn, see also Lawn Furniture
trestle table design
refinements
assembly
cushions, how to make
Chair, see Re-Caning
Chair, Bottom Weaving
reed, how to estimate
soaking of reed
warp and woof of weaves
weaving method
meaning of weaving terms

Chessmen, How to Make

Chest, see Cedar

Chest of Drawers

detailed plans
wide drawers
narrow drawers
concealing doors
finishing details

Chest of Drawers, Modern, see also Bedroom

Furniture
frame construction
bottom panel eliminated
easy assembly
plywood edge, concealment of

Children's Cars, Part I
scaled down model
starter motor driven
storage battery, connections of
axle mountings
brake assembly
steering shaft
detail construction plan
differential eliminated
operation of car
distance on battery charge
sheet metal, body material
final trim

Children's Cars, Part II
standard tools, only, required
hardwood, soft wood, correct use of
complete assembly plans
working details
bracing for rigidity
trim, how applied
wheels, laminated
wheels, lathe-turned
bearings, choice of
steering mechanism
accessories

Children's Cars, Part III
dimensions for assembly
class details
pedal mechanism
steering arrangement
rear wheel bearings
hood and deck covering
windshield, plastic
lights, battery-operated

Children's Clothes Rack, see also Storage Space

animal motif
hardwood construction details
hand tools, only, required
screws, use of

Children's Folding Table and Chairs
weight scaled for children, how to
chairs, duplication of
cutting methods
table construction details
pre-assembly paint finishing
decals, use of

Children's Picnic Table
scrap lumber, how to utilize
adjustable seats, how to make
weatherproofing instructions

Children's Playhouses
packing cases, how to use
easy dismantling for storing
low grade lumber, how to use
window framing details
door framing details
corner locking bolt details
floor, how to damp-proof
heavy glass, how to use in windows
siding, how to make from crates
hardware
removable roof, how to build
roofing details
scaling furniture to fit
lighting, extension cord used for
plywood version, simplified
materials for permanent or temporary use
detailed plans
squared trim drawing
framing details
damp-proofing
painting and finishing

Children's Slide
materials list
detailed drawing

Children's Wardrobe
house motif in design
shingled roof construction
lapped siding, how to apply
storage in top, plan of
inside lights, how to make
drawer construction details

Children's Chiffarobe
materials used in
detailed drawings
bandsaw, use of
rabbeting details
tenoned rails, how to fit
storage partitions, construction of
sanding and finishing details

Chimes, see Door

Chimes, see Doorbell

Chimneys, Repair and Maintenance, see also Tuck Pointing
repa"ring damaged chimney, how to
cleaning soot from
insulation to reduce fire hazards

China Cabinet, How to Build
construction drawing
drawer details
glass doors, construction of
beveled trim, how to make
Chip Carving Made Easy
tools required
full size patterns, use of
basic patterns for
cutting technique
special tool grinding methods
finishing techniques
picture frame project
book ends, how to make
pipe rack, how to make
Chisels, see Cold Chisels
Chisel Racks, see Wood Chisel
Christmas Cards, Make Your Own
silk screen process
spatter technique
cellophane cards, how to make
novelty card types, how to make
photography, use of
Christmas Tree Ornaments, How to Make
detergent powder and starch, use of
prepared sparkle powder, how to use
sequins, how to use
beads, how to use
rhinestones, how to use
drying methods
Christmas Tree Stands
braced type
tripod stand
box stand unit
Christmas Trees, How to Make
paper cone, use of
dowel and wire construction
multiple graduated cone type
Chuck Fitting on Your Lathe
machining back plate
casting back
pattern for casting, wood used for
thread cutting
thread checking and matching
Cigarette Box, How to Make
sheet metal, how to use in
sheet metal forming methods
pattern, use of in cutting metal
assembly details
buffing, how to do
lacquer, how to apply
Cigarette Box, Plastic
plastic cement, use of
squared drawing
Cigarette Lighter, Care of
wick, how to replace
spark wheel, how to clean
Circle Cutters, How to Make
use in sheet metal work
type for hard materials
type for soft materials
working plans
Circular Saw, Converted from Lathe
table hinge construction
table support construction
depth of cut, regulation of
rip fence, how to mount
dado head, use of
angle cutting methods
Circular Saw, Use of
blade sizes
blade types
tilt table type
tilt arbor type
rabbeting, how to do
beveling, how to do
dadoing
miter cutting
grooving methods
power tool size chart
Circular Saw-Sander Unit, How to Build, see also Sanders
stand construction
motor size, selection of
carriage bolts, use of
trunnions and slides, how to make
brass thrust units, how to mount
blade height adjustment, how to make
pillow blocks, how to align, install
shaft, how to lock in position
table assembly
blade opening
table mounting
T-square fence, how to make
sander, how to make
sander motor size
Circular Saw Used for Large Stock
use of rollers
table extensions
roller support, how to make
reverse feed, how to do
wedging, how to do
splitter, aids in guiding
fence extension table
long miter gauge fence, how to make
outboard miter gauge slot
pattern board, how to use
table guide, how to use
Circular Saw Dado Head, How to Use
duplicate dadoes, how to cut
blind dadoes
corner joints
rabbet joint
dado and rabbet combinations
double dado
rabbet and miter combination
rabbet joints, strip cut
grooving methods
angular notching
tongue and groove cutting
tenons, cutting of
Circular Saw, 6-inch, How to Build
materials
arbor construction
saw blade, how to mount
table elevating mechanism
cross cut guide, how to make
ripping fence, how to make
table assembly
Clamps, How to Use
types of
hand screw, how to swing
bar clamp, use on wide work
miter clamp, use of
curved work, how to clamp
cross clamp, use of
C-clamp, use of
framing work, clamping methods
glued work, clamping of
saw horse bar clamp, how to make
clamp, substitute for
clamps made from turnbuckles
C-clamps, hints on use of
Clamps, see Battery
Clamps, Cam Action, How to Make
Cleaners and Finishers, see also Stain Removal
soap jelly
wall cleaning solutions
wallpaper cleaner
starch for walls
wax paste
thick liquid wax
water-wax emulsion
oxalic acid stain remover
all-purpose cleaner
starch solution, for wood cleaning
kerosene emulsion
electrolysis for silver
silver or nickel polish
whiting paste for metal
glass polish
window cleaning fluid
mirror cleaners
calcium carbonate, use on glass
bottle-cleaning solution
removing stains from marble
marble and porcelain cleaner
soaps, how to make
soaps, how to reclaim
water softeners, how to make
rug and carpet cleaning
willow furniture cleaner
paint brush cleaner
toilet bowl cleaners
copper stain removal
brass, how to clean
concrete walls, cleaning of
stone work, how to clean
terra cotta, how to clean
weeping compound for shop
chimney cleaner
felt cleaning
show cleaner
cleaner for rubber
book cleaning
cleaning burned pans
rifle and gun cleaner
Cleaner, see Vacuum
Clock Case, How to Make, see also Glass
Block Projects
alarm clock adaptation
detailed plans
assembly and finishing
Clock Case, Period Style
materials used
joining details
decorative work
Clock Case Plastic
jigsaw, use of
electric movement, fitting
pull-apart drawing
Clock, see Electric Clocks
Closet, How to Arrange, see also Storage
Space
storage drawers, how to make
compartment shelves, how to make
sliding clothes rack, how to install
Closet, see Linen
Clothes Hamper, How to Make
materials required
ventilator, how to decorate
Clothes Lines, Tips On
use of spreaders, double line
retractable line, installing
springs, use of
prop, how to lock in place
Clothes Rack, see Children's Clothes Rack
Coal Grate, see Fireplace
Coat Hangers, Tips on Use
outdoor adaptation
rust prevention
boot hangers, made from
tool rack, made from
roll film hangers, made from
toaster rack, made from
towel rack, made from
stove lighter, made from
rain gutter fastening, made from
bird decoy
minnow net, framed with
doorstop pin bag frame, made from
tie stretcher, made from
rack for jar tops, made from
Coffee Table, How to Make
materials, how to obtain
how to work materials
use of squared drawing
assembly and finishing details
Coffee Table, Mahogany, How to Make
materials used
framing details
mortise and tenon joints, use of
pull-apart drawing
finishing
Coils, see Winding
Cold Chisels, How to Use
types of
selection for job
hammer, used with
techniques
sharpening methods
iron handle for
Cold Weather Starting, see also Winterizing,
Automotive
battery, how to check
battery, overnight charging
cable corrosion
spark plugs, checking
distributor, over-lubrication of
distributor, locating defects in
automatic choke, proper setting of
manual choke, synchronization of
poor compression, causes of
Collet Attachment for Metal Lathe, see also
Metal Lathe Accessories
lathe turning of
handwheel
spindle nose cap
collet closer
collets, fitted to
assembly
Collet Type Vise, How to Make
lathe turning
collet key
hardening of parts
Colonial Bed, How to Make
materials
lathe turning
mortise and tenon, use of
bed width chart
jig, how to make
jig, use of
standard bed rail fasteners, use of
finishing
Colonial Bookcase from Fruit Crates
materials, how to salvage
pull-apart drawing
squared scroll work layout
finishing
Colonial Fireplace Chairs
scrap lumber, use of
flat ladder back
rounded ladder back
seat construction details
fitting cushions
webbing, use of
Colonial Cupboard, Part I, see also Cabinets
built-up panels, how to make
dovetail mortises, use of
friction catches, spring type
Colonial Cupboard, Part II
wooden turn buttons, how to make
spoke shave, use of
moulding, use of in paneling
squared drawings, sides, use of
knobs, lathe turned, how to make
mortise and tenons, making by hand
finishing
Colonial Writing Desk
frame, how to build
drawer slides, how to make
circular saw, use of
legs, how to lathe turn
back saw, use of
hardware required
finishing, authentic

Colonial Mirrors
frame construction
ornamentation
scroll saw, use of
wood file, use of
bannister type frame
split turnings, use of
Queen Anne style
Medallion, how to make
18th. century design
squared drawings, use of
Chippendale type
plywood, use of
Color, see Textile
Color Photography, see also Darkroom
Improvements
processing unit, how to make
tank, details of
copper tubing, how to use
copper tubing, how to bend
temperature controls, how to make
wash tank, double wall construction of
galvanized sheet metal, use of
tank frame, how to assemble
fire retardant insulation, use of
pre-heater element, insulation of
thermostats, control of
thermostat, valve control
thermostat, micro-switch
heat well, sensitivity of
riveting
soldering
sweated joints, how to make
lubricating oil, use of
wiring diagram
plastic paint, acid-alkali-proof
tank insulation, how applied
heat absorbing glass, use of
film processing details
trays
cellophane, use of
rollfilm tanks, use of
Cooling System, see Car Cooling System
Compound Cuts with Circular Saw
laying out cuts
sawing parts
miter gauge positions
standard and special settings
corner blocks, cutting
tilt and miter gauge setting chart
pedestal stand
types of joints
Compressor, see Air Compressor
Concrete Improvement Work
lamp post
cracked flagstones
cement steps
garden seats
porch floors
vases and urns
trash burner and fireplace
concrete, correct mix
concrete, how to color
Concrete Painting

cement paint
cracks, how to patch
cement paint, how to mix
cement paint, application of
cement paint, curing of
old finish, how to remove
rubber base masonry paint, walls
rubber base masonry paint, floors
oil base masonry paint
exterior resin emulsion
liquid hardener, how to use

Concrete Repairs

patching sidewalks
filling walk-to-wall cracks
tilted walks, leveling of
walk sections, replacement of
driveways, how to lay
ready-made concrete
transit mix, use of
hand mixing, correct method
brick and flagstone walks
re-suracing broken floors
wall cracks, how to seal
concrete work, general tips on

Condensation, Control, see also
Waterproofing, see also Air Conditioning,
see also Humidifier
condensation, damage caused by
condensation, causes of
moisture, sources of
preventive measures
humidity control
ventilation, advantages of
louvers, use of
vapor barrier, installation of
thermal insulation, effect of

Copper Float Made Into Candy Dish
lamp base cap, use of
knob type drawer pull, how attached
buffing and polishing

Copper Bowls, Hammered
tools required
hammering technique
annealing
wooden bases, how to attach

Copper Hammering, see also Metal, Art,
Hammering
mould, how to make
tools required
material, preparation of
squared drawing, how to use
ornamentation techniques
finishes for metal

Copying Table, Projector Type, see also
Projector
under-window mounting
how to use
construction details
materials required
wiring diagram
lens quality, importance of
lens mounting
negative holder
cabinet base, how to make
optical unit, drawing of
table base, drawing of

Corner Cupboards
full size patterns, how to use
materials required
parts, assembly of
lock, installation of
scroll shelves, how to make
twin door base
drawer type base
desk combination

Cornsies, How to Make
types of
modern finishes for
use at windows
bed alcove, decoration of
kitchen cabinet trimming
bathtub enclosure
pattern details
corner details
support, methods of
indirect lighting, cornice for

Cornice, see Valance

Cottage, see Tent

Crackle Finishes, see also Finishes with Brush and Spray
materials required
special techniques
use of fish glue
paint, types of
paste filler, how to use
glaze, how to make
glare, how to apply
protective coat

Cradle, see Baby

Cradle, see Doll Cradle
Crib, see Baby

Cribbage Board, How to Make
wood inlay, use of
woods suitable for
construction drawing

Crocus, see Abrasives

Crossbows, How to Make
wood and metal, use of
stock for wood bow
construction details
plastic, where to use
lemonwood, dimension chart for bows
gun mechanism drawing
bow drawing
wood bow, how to make
bowstring, material for
steel bow, how to make
auto leaf spring, use of
sheet plastic, how to work
bows, interchangeable
flax, use in bowstrings
steel bow factor chart
stock for steel bow
gun mechanism, steel bow
arrows, how to make
cocking lever, high powered bows
hunting tips
Cupboards, see Colonial
Cupboards, see Corner
Cutlery Handles You Can Make
plastic design
molds
pouring
shaping
Cut-Off Saw, see Swing Saw
T-iron, use of
channels
arbor mounting
motor mounting
motor belt guard, how to make
saw blade, type of
blade speed, correct
how to use
Cut Outs, Rapid Production Methods
pad sawing
block printing
perforated patterns
waxed paper transfers
hand painting
silk screen stencils
metal stencils
paper stencils
Cutters, see Circle Cutters
Cutting, see Glass

D

Dado Head, see Circular Saw Dado Head
Darkroom Improvements
vibration, elimination of
storage space, arranging
special light switches
drying frames
trays, how to level
ferrotype, position of
folding drainboard
wiring, installation of
developer temperature control
enlarger, how to brace
Darkroom, Portable Type
plywood, use of
balloon cloth, use of
hand holes made light tight
detailed assembly drawing
Darkroom, Apartment Type
fold-away cabinet, construction of
equipment accommodation
compartment spacing
electrical outlet installation
construction drawing
Darkroom, Kitchen Type
kitchen cabinet adapted to enlarger
rolling cabinet, how to make
stock size lumber, use of
linoleum work surface, installing compartments, arrangement of
caster arrangement
Darkroom Timer, How to Make, see also

Electrical Alarms, see also Photo Print Timer
Darkroom, Cabinet Type
roll-away cabinet, use of
angle iron, use of
knock-down table
electrical outlet, door installation
wiring diagram
construction drawing
Darkroom Switch Box, see also Electrical Alarms
single control panel, how to make
wall or table installation
portable use of
wiring diagram
connections, details of
Darkroom, Suitcase Type
film sizes suited to
strip printer construction
chemical compartments
film washing tank, miniature
carrying case construction plans
Decoy Anchor Line, Non-Tangling
awning rope hook, use of
snap hook, use of
Decoys Made at Home
head carving
cardboard templates, use of
bandsawing to outline
rough carving, how to do
wood rasp, use of
body construction, layer type
gouge, use of
spokeshave, use of
weight control
head, how attached
waterproof glue, use of
ready made eyes
color key for natural finish
profile decoys
bag decoys, how to make
kapok, use of
spring clothespin, use of
Desk, see Colonial Writing Desk
Desk Set, Plastic
sheet plastic
red plastic
tubular forms
spring brass, use of
felt, use of
fastenings
Desk, Kneehole Type
materials suggested
kick space provided
typewriter slide, how to build
detailed construction drawing
glue, use of
book compartment, construction details
laminated top construction
drawer details
drawer handles, how to make
Desk-Shelf Combination, Boy's Room
pigeon hole unit, how to make
stationery compartments, details
secret compartment, how to make
drawer details
top assembly
writing lid, hinge detail
lid supports, how to attach
shelf assembly
Desk, Modern
pedestal construction
book compartment details
storage drawer details
built-in waste basket construction
plywood top, how to make
glue and nails, use of
construction drawing
finish, types of
Desk, File Cabinet Base
accessory top, how to make
file cabinet, how to fasten
finishes, choice of
dimension drawings
Desk, Modern
contrasting woods, use of
novelty drawer pulls, how to make
hardboard, use of
top, built-in construction of
warping, prevention of
apron, how to attach
circular saw, use of
joint, dovetail, how to make
typewriter shelf, how to build
materials list
dimension drawing
finishing details
Desk Drawer Repairs, How to Do
Desk, Student Type
plywood, use of
hand tools, use of
bookshelves, construction of
magazine rack, construction of
detail drawing
Desk, Outdoor Type
self-storing stool, how to make
portable features, how to build
construction drawing
Developing, see Movie Film
Developing Tank, How to Make
battery case, use of
battery case, how to clean
3 compartments, use of
notching details
light-tight cover, how to make
drain tubes, how to attach
film holders, how to adapt
Developing Tank Agitator, How to Make
pipe fittings, use of
electric motor and transformer, use of
speed reducer, how to make
motor mounting details
soldering or welding, choice of
Developing Tank Agitator, Water-Operated
rocker hinging details
spring-balance base, details of
Dictionary of Shop Terms
Anneal
Bore
Boss
Braise
Broach
Buff
Burnish
Bushing
Carburize
Case Harden
Castellate
Chamfer
Chase
Chill
Color-Harden
Core
Counterbore
Countersink
Crown
Die
Die Casting
Die Stamping
Draw
Drill
Drop Forging
Face
File
Fillet
Fin
Fit
Flange
Forge
Graduate
Grinding
key
Keyway
Knurling
Lap
Lug
Malleable Casting
Mill
Pack Hardening
Pad
Peen
Pickling
Plane
Planishing
Polishing
Profiling
Punch
Ream
Relief
Riveting
Sandblasting
Shape
Shear
Shim
Spin
Spline
Spot Face
Spot Weld
Steel Casting
Swage
Sweat
Tack Weld
Tap
Temper
Template
Tolerance
Tumble
Turn
Upset
Welding

Dining Set, How to Build
hand tools, use in construction
leg details
rawhide, use of
weaving detail, seat
table extension, details of
finishing
materials list
construction drawings

Dining Table, How to Build
plywood, use in
framing details
car-top fastening details
materials list
construction drawing
marine glue, use of
gluing instructions

Dining Room Furniture, How to Make, Part I
table frame construction
table top, how to attach
extra leaf detail
dovetail, cutting method
leg details
chair assembly
chair frame construction
webbing, how to attach
springs, how to tie
burlap, use of
welt, how applied
moss filling, how to use
muslin cover, how applied
finished upholstery, details
patterns for chair upholstery

Dining Room Furniture, Part II
credenza, cut-away drawing
frame assembly
side members, installation of
plywood, reinforcing
top, construction of
drawer framing
doors, how to attach
china cabinet, construction of
twin unit construction details
dimension drawing
silver tray detail
drawer pulls, how to make

Dining Room Suite, Sheraton Style
types of wood used in
construction drawing, legs
construction drawing, braces
band saw, use of in construction
trial assembly, table
top, assembly of

waterproof glue, use of
dowels, use of
final assembly of
slides and center legs, how attached
chairs, assembly details
chairs, upholstering
wood finishing
construction drawing

Dining Chairs
detailed drawing, armless chair
detailed drawing, arm chair
materials list

Dinner Bell, How to Make
ready made plumbing fixture, makes bell
stand, wood construction of
striking hammer, how to make

Dinnerware in Wood, How to Make
faceplate turnings, how to make
templates, use of
squared drawings for
tapered turnings
lathe finishing

Directional Switch, see Electric Motor
Disk, see Sander
Disposal System, see Sewage

Dog House, How to Build
hardboard, use of
doors, use of
double wall construction details
insulation, how to install
ventilator, how to make
canvas flap, how to install
floor, construction of
finishing

Dog Houses, Novelty Types
modern design, plans for
made from barrel, construction of
roof type, plans for
with window, design for
model house, plans for

Dog House with Sliding Roof
Dog House for Auto Deck
Dog Tether, Adjustable
Dog Door, Spring-Closed

Doll Cradle, How to Make
squared patterns of
materials used in
decoration of

Door Canopy, How to Make
creation drawing
squared pattern for
aluminum, use of in
fastening methods
canopy, how to attach
braces, use of

Door Chime, How to Make
doorbell, conversion of
brass tubes, use of in
assembly diagram

Doorbell Chimes, How to Repair, see also

Electrical Chimes

typical failure causes
abrasive, use of
general tips
Door Jamb, Reinforcing of
Door Construction and Repair, see also Locks
detailed drawings
doorway measurements
doorway position, changing of
studs, how to locate
studs, how to cut out
wall sections, how to remove
door frame, how to install
hanging a door, details
hinge leaf mortises, scribing
latches and locks, how to fit
installation methods
thresholds, how to renew
sticking doors, how to cure
doors edges, proper planing of
door, removal of
hinge edge, planing of
hinge mortises, deepening
re-hanging door
hinge details
warped doors, how to cure
door distortion, how to cure
waterproof glue, use of
doors, re-gluing of
rattles, cure of
bolt, how to re-align
compression doorcheck, installation of
Dormers, How to Install, see also Roof
Framing, see also Attic Space Conversion
gable dormer
hip roof type
wide Dutch colonial types
single-widow, flat roof
French Provincial type
studio room window
precautions when starting job
shingles, how to remove
dormer opening, how to cut
additional rafters, installation of
headers, installation of
wall framing, details of
corner posts, setting of
roof framing, details of
window framing details
sheathing, roof
sheathing, walls
cornice construction
facia board data
roofing, how to lay
shingling, methods of
window frames, how to set
flushing, use of
siding, how to apply
interior walls, finishing of
insulation, types of
flooring details
Dowel Joints, see also Joint Making
strength factors
edge joints
dowel centers, how to use
corner joints, methods
miter joints
typical application
production work, tips on
the dowel drill, types of
the dowel pin, specifications of
gluing, relation to dowels
dowel fitting
Dowel, Use in Beam Compass
Drainage Systems
coordination of
drainage system, parts of
typical installation, diagram of
systems, kinds of
dry well, diagram of
drainage lines, pipes and fittings for
pitch of, specifications
pipe sizes, importance of
pipe sizes, basis for
size, determination of
storm-water drains, sizing combination of
soil stack, specifications of
stack and vent terminals
stacks, offsets in
drainage branches, horizontal
vent pipes, purpose of
stack venting, specifications
prefabricated stack venting units
back vents, reasons for
main vent stack
dry and wet vents, arrangements of
vent pipes, diameters and lengths of
drainage system, 1 story house
drainage system, 2 story house
traps, where needed
traps, types of
traps, types not to be used
house traps, where required
storm-drain traps, where required
window-well vent
area way drains
indirect wastes, how to control
back flow valve in house drain
grease trap, where required
pipe cleanouts
drainage system, existing house, installation
house drain, how to lay
stack, how to set up
waste and vent pipes, concealed
walls and floors, minimum openings
house sewer, installation of
trenches, digging methods
city sewer, connection to
leaks, testing for
frost, protection and insulation from
Drainage Troubles — Causes and Cures
clogged sink drains
drain pipe chemicals, effects of
mechanical cleaning methods
lavatory drains, cleaning methods
bath drains
water closet stoppages, curative measures
closet bowl, removal of
closet bowl, how to replace
floor drains, strainer removal
setting time, concrete
concrete, how to mix
uckboat, How to Build
waterproof plywood, use of
framing details
full size patterns, how to use
waterproof glue, use of
bracing, need for
lumber, proper seasoning of
screws, use of
construction drawing
finishing details
deck, construction of
finish, special type
uster, see Seed Duster, How to Make
eying, How to Do It, see also Textile
Coloring, see also ABC of Color
reasons for
materials suitable for
preparation for dyeing
old color, removal of
stains, removal of
fading, treatment of
vessels, suitability of
dyeing processes
precautions
hand dyeing methods
tinting
washing machines, use of
weight-dye chart, use of
drying methods
eyedyes, How to Do
dye vat, proper type
two tone effects, how to achieve
plastic dyes, how to make
masking, use of
laminating dyes, how to make
dye inlays, techniques
concentrated dyes, application of
sanded edges, how to treat
dipping, how to do

lectric Appliance Cords, Data On, see also
Extension Cords
plug protector, how to make
plug, finger grip on, how to make
plug-clothespin bracket, use of
fraying of cord, how to prevent
ironing cord support, how to make
slack cord holder, how to make
etric Arc Furnace, How to Make, see also
Electric Wiring
flower pot, use of
arc light carbons, insertion of
refractory lining, how to make
lining, application of
asbestos wrapping, use of
lining, how to dry
lid, mold, use of
electrical connections, how to make
starting the arc, details of
metal melting, details of
alloys, how to make
Electric Bell, Clock-Controlled
Electric Clock, Lubrication of
Electric Clocks, How to Repair
mechanism, removal of
coil, how to check
bearings, condition of
bearings, cleaning of
materials used
oils, proper types of
rubber mounting, replacement of
mechanisms, types of
soldering, use of
replacement parts, sources of
Electric Clock, Repair Tips
Electric Drill Bracket, How to Build
materials used in
construction plans for
squared drawing of
use as drill press
use as bench grinder
use as sanding disk
use in buffing work
abrasive wheels, use of
Electric Fan Repairs
failure, causes of
brushes, condition of
commutator contacts
micrometer, use of
carbon, removal of
armature bearings, cleaning of
Electric Hand Saw Technique
blade sizes, range of
cross cutting
saw specification chart
cutting, mechanics of
duplicate lengths, how to cut
ripping, tips on
notching, methods of
depth, how to set
chisel, use of
rabbeting methods
butt joint, how to cut
pocket cut, how to make
table saw, use as
masonry sawing
metal sawing
special blades, availability of
abrasive wheels, special uses of
Electric Iron Repairs, How to Do
cords and plugs
underwriters knot, how to tie
frayed cords, how to splice
circuit tester, use of
plug, how to connect
switches, failures of
nichrome wire, how to repair
heat control switch, testing of
Electric Motor Tips
brushes, emergency repair of
motor protective cover, how to make
Electric Motor Directional Switch
leads, connection of
switch, construction of
fiber, use of
spring brass, use of
construction plans
switch, operation of
Electric Motor Mount, How to Make
interchangeability of
belt tension adjustment
multi-position diagrams
angle iron, use of
mounting pivot details
construction drawing
Electric Motor Mount with Handwheel
Adjustment
Electric Motor, Quick Change Mount
Electric Motor Mounting Block
Electric Motor Rewinding, How to Do, see
also Winding, Coils
tools required
frame parts, marking of
armature stripping, precautions in
general preparations
old windings, recording of
center punch, use of
slots and segments, identification of
recording, table method
unwinding, completion of
old wire, weighing of
wire size, determination of
winding, methods of
commutator, removal of
commutator, how to replace
insulation, removal of
new insulation, how to estimate
hacksaw, use of
shellac, use of
winding frame, how to make
leads, how to mark
coils, how to form
binding, proper methods of
induction motors, special techniques
solder, use of
Electric Motor Armatures, Mounting of
Electric Motor Servicing
failure, finding cause of
starting failure, causes of
commutator type, failure symptoms
automatic switches, designs of
automatic switches, common troubles
starting coil, replacement of
split-phase motors, emergency starting
armature rewinding
burned out coils, how to locate
field, or stator coils, burned out
lubrication
excessive friction bearings
grounded armature, detection of
grounds and shorts, causes of
insulation, repairs to
overheating, causes and cures
Electric Torch, How to Make
materials required
job capacities
operating details
precautions
general tips on use
construction drawing
Electrical Alarms, How to Make
types of
parts required
assembly of
mounting details
one-story house systems
burglar alarms
fire alarms
thermostats, use of
wiring diagrams
Electrical Alarms, see Darkroom Timer
Electrical Alarms, see Photo Print Timer
Electrical Rotating Contact, How to Make
see also Model Railroads
construction diagram
operational capacities of
sizes
arching, prevention of
uses of
Electrical System, see Car Electrical System
Electrical Tester, How to Make
types of
testers, use of
materials required
wiring diagrams
Electrician's Test Light, How to Build
stock parts, use of
construction drawing
circuit diagram
materials required
assembly of
operation of
Electromagnet Designing and Building
general principles of
iron, use of
winding details
direct current magnets
rules for construction of
determining winding turns
ampere-turn chart
types of metal
wire size table
wire size, determining of
capacity of electromagnet, determining
Impurities, removal of
plating with copper
oxidized finish, how to make
silver plating
gold plating
leather, plating on
textiles, plating on
plastics, plating on
fragile items, how to handle
plating set-up diagrams

Electroplating Without Cyanides
polishing the work
iron and steel, how to clean
zinc objects, how to treat
zinc-base die castings, special methods
copper and brass, electro-cleaning
copper plating, non-poisonous solution for
solution, how to use
nickel plating iron
copper base plate for nickel
zinc, nickel plating of
zinc base die castings, nickel plating plate, how to brighten

Emery, see Abrasives

Enamel Inlays Baked on Metals
designs, how to etch
etching solutions, formulas for
color pigments for vinyl enamels, chart
preparing the work
enamel application, special techniques
baking, temperature and time regulation of
baking separate coats, data on
finishing techniques

Enameling Furniture
surface preparation
fillers, how to use
brushes, types of
enamel, proper mixing of
undercoater, use of
between-coat sanding, methods
enamel, how to brush-flow
spray gun, use of
general tips

End Table, How to Build
tools required
construction drawing
stock lumber, use of
assembly details
adhesive, use of
finishing

End Tables
construction drawing
materials needed
assembly details
bookcase unit, construction of
upholstering details
power saw, use of

Enlarger, Photo, Use in Copying, see also

Darkroom Improvements
photo materials used
subject matter suited to
periscope viewer, how to make
light reflections, elimination of
copy negative, how to make
viewer, how to make
lighting technique
lighting accessories
processing methods
composite prints, how to copy
matchbook covers, how to personalize
match pack details
Enlarger Focusing Aid, How to Make
Enlarging 8 mm Film, How to Do It
equipment required
masking technique
projection methods
exposure range, determination of
negatives, size of
developer, types of
Enlarger Made from Camera
basic materials needed
lamp house, construction of
opel glass, use of
light meter, use of
ventilation, provisions for
light baffles
finishing details
film carriers, how to make
platform and column, construction of
detailed drawing
counterweights, use of
switches, choice of
Enlarger and Timer, Joint Operation of, see also Darkroom Timer
electric clock, use of
wiring diagram
construction details
operation methods
Etching Glass and Metal
solutions used
precautions
etching glass
lead containers, use of
glass, cleansing of
wax coating, preparation of
design, application of
wax removal methods
etching steel
solution, composition of
asphaltum paint, use of
swabbing technique
asphaltum, removal of
less corrosive solutions, formulas for
Exposure Meter, see Photo
Extension Cords, Tips On
kinks, prevention of
connection reinforcement
winding reel
wire solder, use of
extension cord support

F
Face Plate Lathe Made from Polishing Head
construction drawing
wood mounting base, how to make
Fan, see Attic

Fan, see Electric
Faucets and Valves, Data On
gate valves
globe and angle valves
globe and angle valves, reconditioning
plug or key valves
drainable valves
valves, installation of
valves, maintenance of
safety valves, hot water heater
safety valves, other types
pressure reducing valves, specification
check valves, operation of
valves, water closet types, repairs of
flush valves, water closet
back flow, prevention of
compression faucets
sill cocks
faucet seats, refacing of
spindle, leakage at
fuller faucets, repair of
mixing faucets, details of
mixing valves for showers, automatic
hydrants, frost-proof type
Feed Sack Projects
material available
preparatory steps
child's coolie hat
Christmas stockings
vanity stool cushion
hand stockings
toy frog
beach bag
laundry bag
pot holders
hanger covers
lingerie cases
shoe bags
hose bag
Feeders, Bird, see Bird Feeders
Felling, see Tree
Fences, How to Plan
types of
basic construction details
gauging suitability of
available materials, use of
woods suitable for
fastenings and hardware
gate details
Fences, Rustic Types
material seasoning
bark removal of
fastenings suitable for
green wood, use of
raffia, use of
gates, latch and hinge details
willow, pliability of
discarded telephone poles, use of
arbor, construction of
Fence Height Gauge
Fence, Portable Electric
Fence, Sectional
dismantling for mowing
Lubrication drawer.

Idling.

I-tiling.

I-ligurine.

I-ile.

I-iling.

Tool jack, chain driveshaft, chassis, distributor, automobile surface drive spreader drive axle, axle, transmission, special cellulose lace, hopper angle wheels, hopper, assembly features, color files, types of cut beveling techniques vise, use of stroking technique hand positions for filing filing block, use of alloys, special files for plastic, files for file types

Film Viewer, How to Build film sizes used in retouching easel, use of editing movie film in metal can, use of air vent, how to make opal glass, installation of lamp socket details magnifier holder, details of film size adapter, how to make construction diagram reel holders, addition of movie film guides, how to make magnifier, holder for finishing details Filter, see Air Filters Filter, see Auto Finish, see Crackle Finish Finishes with Brush and Spray crackle finishes, how to apply materials used in methods surfaces suitable for wrinkling, how to do spray gun, use of baking, temperature control in crystallizing lacquer, how to use shading, how to do two-tone effects, how to achieve Jack Frost lacquers, how to use side shading, methods of smutting, technique of spatter, methods of oxidizing, imitation of dusting, materials used veiling, special spray gun nozzle for plastic paint, novelty treatment of spread-spatter, special effects caen-stone, knitting and troweling Finishing, see Wood Fire Alarm, How to Build, see Electrical Alarms wiring diagram materials needed operation of Fireplace Barbecue, Outdoor, How to Make, see Outdoor Furnaces knockdown construction details materials required steel scrap, use of harrow disk, use of welding, how to do utensils, holder for removable leg details
draft hole details
Fireplaces, How to Build, Decorative
Imitations
framing details
plywood skin
brick or stone, how to simulate
knotty pine trim, use of
how to fit against wall
modeling tools, use of
tinting colors for imitation masonry
lamp black, use of
blow torch, use of
wooden andirons, how to make, peening
Fireplace Coal Grate, How to Make
auto crankcase, use of
draft holes, how to make
use of
pre-use preparation
Fireplace Bellows, How to Make, see also
Wood Chest and Bellows
beaver pelt, use of
carving details
squared drawing
bellows, material for
flap valve, installation of
Fireplace, Circulating Type, How to Build
steel shell details
dimensions
metal assembly methods
masonry details
damper control
footing details
foundations
hearth, construction of
cold air inlet details
hot air outlets, angle of
arch bar, installation of
chimney design
cleanout door, fit of
dutch oven, how to install
hot water heating coils, how to add
Fireplace Hood, How to Make
sheet copper, use of
construction detail
rivets and lag screws, use of
mounting details
Fireplace, see Outdoor Fireplace
Fireplace Screen, How to Make
Chinese motif, use of
mortise, use of
corrugated fasteners, how to use
hardware cloth, installation of
flower box, copper lining for
detailed construction drawing
Fishing Rods, see Bamboo
Fishline Dryer, How to Make
hardwood, use of
take-apart features, details of
tension adjuster, how to make
finishing details
Fixtures, see Lighting
colored oxides, use of
Flagstone Casting, How to Do
mold, how to cut
poured concrete, use of
Flagstone Laying, How to Do
excavation for
ground preparation
drainage provisions
cement, use of
gravel bed, tamping of
flagstone, arrangement of
footings, where required
stones, how to cut
grading details
patio construction details
Flagstone Mold, How to Make
stock lumber, use of
dividers, how to make
oil, use of on form
concrete, formula for
curing data
drainage, provisions for
Flagstone, Sheet Metal Forms For
joining and crimping
Flagstone Walk, How to Pour
principle tools needed
on-the-spot casting, how to do
design planning
sod, how to remove
metal molds, use of
proper mix for concrete
chipping, advantage of
proper laying method
Flash Synchronizer, see Photo
Flexible Shaft Tools, How to Use, see also
Workshop Planning
use of in:
sanding
grinding
drilling
polishing
buffing
carving
flexible shaft data chart
chuck and spindle details
shaft bearing assemblies
extensions, use of
motor mounts for
core of shaft, cleaning and lubricating
Flexible Shaft Unit Made in Shop
stock motor, use of
motor and shaft assembly
special parts, sources of
base, steel plate used for
bail, half-pattern for
assembly, special techniques
detailed construction drawing
Flight Bows, see Archery
Floor Lamp, How to Make
short sections, use of in turning
built-up base
scroll saw, use of
wiring details
finishing details
Floor Lamp, Aquarium Base
construction details

Poor Laying, Finishing, and Repair, see also Wood Finishing
types of flooring
floors, how to keep dry
preliminary steps
flooring, how to nail
starting strip, how to lay
light seams, how to make
door casing, fitting around
scribe, use of
final strips, how to fit
squeaking floors, causes of
squeaking stair treads, silencing
squeaking floors, how to raise
floor vibration, how to correct
gap at shoe mold, how to cure
wood floors, how to refinish
sealers, types of
finishes, types of
wooden floors, resurfacing of
sanding machine, use of
abrasives, grades to use
electric edger, how to use
finish, how to apply
concrete floors, paints for
cement floors, painting methods
floor coverings, failures of
correct bonding methods
cleaning and waxing procedures
filler application, hints on
scraping, hand methods
dusting, importance of
filler application techniques
varnish, correct application of
wax, use of

Door Box, How to Make, see also Window Boxes
concrete, use of
forms, assembly of
curing, data on
curing, see Enlarger
curing Attachment, see Photo
curing processes, How to Make
materials required
dimensions suggested
dowels, use of
glued splice, use of
flexible strips, how to weave
basket splint, use of
double acting hinges, how to fasten
dado, use of
ribbon, use of
pattern, use of

Wood Freezing, How to Do It
foods suitable for
temperature controls
shelling
calding
splicing methods
heat, proper ageing of
lifting, methods of
fruit and vegetable freezing chart

packaging, importance of
wrappings, suitable types
expansion, allowance for
cellophane, heat sealing
syrup chart for fruit freezing
Footrests, How to Make, see also Stools
squared patterns
materials suggested
assembly details
suggested finishes
special compartments
upholstering details
drawers, use of
footstool sewing kit, how to make
compartments, design of
Foot Rocker, How to Make
squared pattern
dimension drawing
upholstery details

Forming Oven, see Plastic
Forges, How to Make, see also Welding
hand-driven cream separator, use of
fan, construction of
air intake, drilling for
firebox construction
asbestos, use of
cleaning, provisions for
firebox, how to mount
detailed drawings
vacuum cleaner, use in forge
Frame, Modern
Frame, see Hacksaw, How to Extend
Framing, see Picture

Freezer Unit, How to Build
tools required
plywood, use of in construction
insulation
freezer mechanism, standard type
construction details
mittering details
grill work, use of
screw, type of
sheet metal lining installation
detailed drawings
metal, use of
sheet metal lining installation
detailed drawings
emulsified asphalt, use of
paper patterns, use of
bakelite edging, how to apply
sealing gasket, how to mount
hardware, types suitable for
dial thermometer, flush mounting of
dehydrator, need for
refrigeration unit, installation of
dry ice, emergency use of

Freezing, see Food

Friction Sawing, How to Do It, see also Sheet Metal
speed increase required
heat factor details in cutting
bandsaw blade speed chart
blade selection chart

Fruit Bowl, How to Make, see also Wood Turning, see also Wood Finishing
Furnace
Fruit
Furniture,
Furnace,
Furniture
Game
System
Tables,
Furniture,
see

Wood

Furnace Air Duct Door, How to Make
Furnace Operation, Coal, see also Heating
System Repairs
ash pit, how to clean
spreading method, faults with
banking, precautions in
poor draft, effects of
chimney, factors of
fuel bed, correct
side banking, soft coal
clinkers, cause of
draft doors, when to close
water, combustion aid
tools for hand firing
coal sizes
side bank method, improvements in
nut-and-sack method
heat loss, causes of
over-draft damper, when to use
kindling, methods of
Furnace, see Blast
Furniture, see Lawn Furniture, Upholstering,
Tables, Bedroom Furniture, Dining Room
Furniture, Living Room Furniture, Tables,
Wood Finishing
Furniture Projects, How to Build
drop leaf table, extension type
secretary with writing shelf
construction details, secretary
3-drawer chest, cutaway drawing
corner unit construction
construction details, extension table
Furniture Repair and Refinishing, see also
Wood Finishing
scratches and checks, removal of
dents, removal of
scars and gashes, how to fill
cracks and knotholes, how to fill
regluing and filling seams
warping, how to cure
blisters on veneer, how to correct
fractures, how to repair
leg joints and chair rungs, making firm
removing old finish
type of remover used
putty knife, specially prepared
remover, how to wash off
stain, use of
refinishing details

G
Game Table, Multi-Purpose, How to Make,
see also Table-Tops
arranged for backgammon
extra leaf for poker, how used
reversible top for chess, checkers, use of
frame construction details
top and leaf details
finish, how to apply
Garage, How to Build
overall plan
sill details
plate details
girder construction
door girder
foundation, how fastened to
rafter plan
rafter sawing details
framing square, use of
building paper, use of
drop siding, use of
roof boards, how cut
roof boards, how applied
roofing, proper type
interior lining, type, how applied
trim, use of
chimney, how supported
material list
Garage Door, How to Build
sheet aluminum, use of
framing details
diagonal bracing, methods
aluminum, how to fasten
insulation, how to install
interior facing
standard hardware, use of
Garage Door Threshold, How to Make, see also
Driveways, Concrete
iron pipe, use of
cement, how to pour
grading, details of
Garage Enlarging, How to Do
original construction limitations
doors, how to re-frame
rear wall, how to remove
lean-to, how to add
waterproof plywood, use of
detail drawing
Garage Storage
celling bins, how to install
platform storage, how to make
Garbage Cans, How to Disinfect
Garbage Container, Preservation Of
vinegar, use of
paint, types suitable to
lining, how to make
Garden Barrow, How to Build, see also
Push-Truck
detail drawing
wheels, removable details
hinged support, how to attach
axle details
how to fold and store
Garden Barrow
semi-pneumatic tires, use of
waterproof plywood, use of
axle details
carrying compartments, details of
construction drawing
Garden Barrow
seamless steel tubing, use of
ball bearing wheels, use of
tool brackets, how to mount
frame, welding of
axle, how to install
tubing, how to bend
plywood construction details
finishing details
construction drawing

Garden Bed Trenching Tool
pipe, use of

Garden Cart, Dual Purpose
detailed drawing
construction method
sifter unit, installation of
spar varnish, use of

Garden Insect Control
spraying techniques for
Fall web worm
thrips
leaf roller
rose slug
lined plant bug, squash beetle
rose leaf hopper
root aphid, or louse
cutworm
root slug
stalk borers
bagworm
aphid, or plant louse
red spider
blist; beetle
tarnished plant bug
Japanese Beetle
iris borer
Colorado potato beetle
potato leaf hopper
potato flea beetle
plumb curculio
coddling moth
pear slug
corn ear worm
cabbage worm
insect sprayer types:
garden hose sprayer
hand-pump duster
bellow duster
sprayer nozzle
deflector nozzle
knapsack duster

Garden Marking-Reel, How to Make
stake and reel assembly
construction methods
plywood, use of
"glue, use of
reel details
"cord, how to install
detail drawing

Garden Tool Rack, How to Build, see also
Lawn Mower Storage
scrap lumber, use of
dimensions, variations possible in
tool types, suitability to
construction drawing

Garnet, see Abrasives

Gasoline Mileage, How to Increase, see also
Carburetor
poor mileage, causes of
brake dragging, causes of
brake dragging, cures for
wheel alignment, effect on mileage
wheel alignment, tire wear caused by
lubricant in transmission, grade of
motor cylinder condition, checking
valves, checking of
valve seats, repairing
automatic spark, repairs to
distributor, repairs to
distributor, adjustments on
fuel pump, checking of
fuel pump, rebuilding of
automatic choke, inspection of
carburetor, inspection of
carburetor, repairs to
carburetor, cleaning of
carburetor, adjustment of
accelerating pump, adjustment of

Gasoline-Drum Rack
automobile rims, use of
welding details
concrete slab, use of
metal paint, use of

Gasoline Siphon-Foiler
mesh screen, use of
brass rings, how to fit
installation details

Gate Latch, How to Make
door handles, use of
rod and flat iron, use of
construction details

Gates, How to Build
iron bars, use of
iron rods, use of
ornamental details
pivots, details of
paper pattern, how to use
sheet metal, how to cut
hells, how to mount
solder, use of
red lead, use of
finishing details
ranch type design
horseshoes, use of
horseshoes, how to mount
chicken wire, use of
welding, use of
initials, how to form
posts, types of
hinge, how to form
pipe and fittings, use of

Gauges, Tips On, see also Measuring Tools
radius gauge, how to make
celluloid, use of
protection methods
cork, use of
thickness gauge, repair of
hanger-gauge combination, how to make
feeler gauge, how to make
scrap metal, use of
ball bearing gauge, how to make
hedge trimming gauge, how to make

Gem Collection, How to Begin, see also
Abrasives
gem cabinet, how to build
detail drawings
individual mountings
minerals, how to buy
Moh’s hardness scale
cabochon chart
cutting materials
gem cutting, how to do
gem polishing, how to do
tool set-up alternates
power tools, use of
polishing abrasives, how to mix

Generator, see Ozone
Generator Regulator Servicing, How to Do,
see also Car Electrical System
wiring diagram
contact points, inspection of
contact points, repair of
resistances, checking
operating principle
points, cleaning of
ground connection, checking of
spring tension, adjustment of

Generator Servicing
ammeter indications
generator troubles, determining
brushes, removal of
insulation, checking of
commutator, carbon removal from
shellac, use of
broken wires, how to repair
new brushes, installation of

Generator, Tips On
brush-holding devices

Germination Percentages, Seeds
test, how to make
percentage, how to figure

Gift Wrapping
paper wrapping details
hidden seam, how to make
glue, how to use
bows, types of:
irregular loop
carnation bow
flat bow
French bow
longeated bow
dahlia bow

Glass Block Installation, see also Walls,
Windows
asphalt emulsion, use of
opening, how to frame
blocks, how to lay
mortar, formula for
joints, finishing details
caulking compound, use of
detailed drawing

Glass Block Projects, How to Make
glass blocks, how constructed
top, how to remove
cut edges, how to finish
rough ends, how to conceal
glass block, drilling techniques
clock case, how to make
door stop, how to make
book ends, use as
ivy holder, details of

Glass Blowing, How to Do
materials required
glass, types of
equipment required, details
tools needed
basic operations:
cutting off
flaring
bending
joining
drawing out and sealing
joining details
hemisphere, how to form
bulb in middle of tube, how to blow
methods
bulb at end of tube, how to blow
glass bird, how to make
problems, how to overcome

Glass Cutting, How to Do, Part I
broken window glass, removal of
glass cutter, how to hold
glass, preparation of
cutting bed, material for
kerosene, use of
scoring, proper pressure for
yardstick, use of
glass cutter notches, how to use
parallel-jaw pliers, use of
plate glass, special techniques for
glass edges, how to round

Glass Cutting, Part II
cutting bed, design for
drawing board, use of
divisions, how to make
circular glass cutter, use of
straight cuts, how to make
curved cuts, special methods for
irregular shapes, patterns for
glass drill, how to make
drilling, methods of
glass, how to mount
expansion and contraction, control of
grindstone, use of
fine finishes, how to make
ground glass, how to make

Glass Cutting (tubing), How to Do
electric glass cutter, how to make
wiring diagram
nichrome wire, use of
power supply
cutting method
rubber grips, re-knurling
hacksaw blade, use of
Ground Glass, see Glass Cutting, Part II
Guide, see Hedge Trimming Guide
Gun Plug and Cartridge Magazine
legal requirements, plug
insertion methods
dowel, use of
plug, how to use
detailed drawing
Gun Cabinet, How to Build
detailed plan
materials required
storage, dust-free design of
storage drawer, how to make
glass, use of
brass grille, how to make
Gun Cleaning, How to Do
special tools:
brass brush
roll jag tip
double-slotted tip
jag with point
plain jag tip
single-slotted tip
how to use barrel cleaning tools
solvents, use of
correct cleaning steps
gun vise, how to make
metal fouling solution, how to make
lapping rod, use of
lathe, use of
abrasives, correct types
vinegar, use of
acetic acid, glacial, use of
Gun Rack, How to Make
corner hanging bracket, how to make
Gutter Repair and Maintenance
stoppages, how to remove
leaks, checking for
leaf strainers, types of
gutters, types of
downspout, how to clear
drain auger, use of
hose, use of
gutters, proper pitch for
rust, prevention of
asphalt base coating, use of
leaks, repairs to
gutters, replacement of
hangers, installation of
roofing, treatment of
downspout, cementing into drain tile
splashers and drain tile installation
gravel, use of
dry well, use of

H

Hacksaw — Power Driven, How to Build
detailed drawings
table, construction of
motor, capacity of
counterbalancing unit, how to install
saw guide, construction of
pressure, regulation of
sawing techniques
tool maker's vise, use of
speed reduction, details of
pulleys, V-type
Hacksaw Frame, How to Extend
strap steel, use of
Hacksaw Technique
blade, how to mount
blades, types of
blades, relative hardness of
blades, flexibility of
teeth, spacing of
cutting methods
general tips
Hammer Technique
claw hammers, sizes and types
hammer, parts of
hammer weights
hammer handles, types of
claws, details of
poll, details of
how to use
nail driving, methods
nail pulling, methods
hammer, care of
tack hammers
hatchets
mallets and soft face hammers
mechanics' hammers
hammer handles, replacement of
Hammered Copper, see Mailbox
Hamper, see Clothes Hamper
Hand Saw, see Electric Hand Saw
Hand Tools, Data On
nail set
center punch
cold chisel
wood chisel
wrench, adjustable
wrench, pipe
hand saw
compass saw
hacksaw
combination square
tin snips
pliers, utility
dividers
steel rule
bench vise
sandpaper holder
oilcan
auger bits
twist drills
claw hammer
push drill
screwdrivers
files, slim taper
file, bastard
file, rasp
clamps
hand screw
bit brace
long bar clamp
jack plane
combination oil stone
pocket knife
handle replacement
handle removal
handles, how to fit
handles, how to fasten
Handle Wedge, How to Make
Handles, How to Tighten
Hand Wrought Hardware, How to Make,
see also Wrought Iron
sheet metal scraps, use of
metal and wood, combination of
copper and brass, use of
hand tools, use of
copper, how to hammer
chain links, how to form
hardware, types of
Hardness Scale, see Gem Collection
Hassock, How to Make, see also Stools
cheese boxes, use as base
padding, types of
padding, application of
burlap, use of
plastic fabric, how to apply
Headboards, How to Make, see also
Bedroom Furniture
original bed, use of
cabinet wood, use of
squared drawings
stock lumber, use of
joints, mortise details
gluing, methods of
assembly instructions
hand finish, how to apply
attaching to bed, methods of
Headboards for Studio Beds, How to Make
materials required
detailed drawings
radio cabinet details
electrical connection details
bookshelf details
Heaters, see Water
Heating, see Oil Burner Servicing
Heating, see Oil Furnace Operation
Heating System Repairs, How to Do
heating units, gas fired
precautions
heating units, oil fired
coal stokers
hand firing, economical methods
smoke pipe, maintenance of
chimneys, pointing up of
chimneys, how to clean
thermostat, proper location of
heating systems, forced warm air
filters, replacement of
warm air ducts, insulation of
systems, hot water
corrosion, prevention of
pressure, relief of
Heat-Treating Metal, How to Do
iron, how to identify
steel, how to identify
grindstone, use of
cold chisel, use of
metal types, identification of
cast iron
wrought iron
low carbon steel
steel castings
high carbon steel
cast iron, increasing hardness
magnetic test
color-heat chart
tools, how to temper
tool color-tempering chart
Heat-Treating Metal
annealing, purpose of
voltmeter, use in temperature gauge
millivolt-temperature chart
nicromate wire, use of
temperature gauge, construction details
solidifying temperature chart
Hectograph Ribbon, How to Insert
Hectograph Surface, How to Renew
Hedge Trimmer, Electric, How to Make
vacuum cleaner parts, use of
rotating knife, plans for
rotating knife, how to temper
rotating knife, how to balance
operating switch, mounting of
Hedge-Trimming Guide, How to Make
wood and metal construction details
Hedge-Trimming Guide, Wire Type
steel posts, placement of
steel wire, installation of
Hi-Fi Speaker Enclosure, How to Make
materials list
detailed drawings
speaker, inclination of
acoustical data
distortion, elimination of
acoustic prism, construction of
front grille, construction details
Hi-Fi Speaker Enclosure
materials required
detailed drawings
woofers, mounting of
tweeters, mounting of
braces, use of
metal, limitations of
switches, details of
electrolytic condensers, mounting of
phasing, details of
Hobby Cabinets, Miniature, see also Cabinets,
Curio
matchboxes, use of
drawers, boring of
hand tools, use of
materials required
detailed drawings
Hoist for Job Shops, How to Make
welding, use of
mounting, 3-point, how to make
winch mechanism, details of
hand crank details
bearings, how to mount
cable drum, plan of
brake mechanism, details of
detailed drawings
wheel, caster type
wheels, non-castering
Hoist, Pivoting Type, How to Make
auto axle, use of
pulley blocks, how to mount
Hoisting Tongs, How to Make
flat iron, use of
welding, use of
grab chains, how to mount
saddle plates, data on
Hole Saw, How to Make, see also Circle
Cutters
hacksaw blade, use of
disk, how to make
dowels, use of
blade, how to bend
blade, how to mount
ejecting mechanism, data on
Hotbed, How to Make, see also Greenhouse
hinged forms, use of
cement, pouring of
sub-surface watering installation
Hothouse, Cabinet Type, How to Make
electric heater, installation of
thermostat, how to make
general construction details
insulation, application of
asphalt paper, use of
roof, hinging details of
translucent cloth, use of
wiring diagram
detailed construction drawing
Hot-Water Heater Installation, How to Do,
see also Water Conditioning
safety controls
pipe and flue sizes
gas and oil burning units, installation of
separate heater units, how to connect
tempering tanks, data on
heat exchangers, use of
water backs, installation of
liming of heating coils, remedies
storage tank, how to flush, refill
leaky drain faucet, repairs to
detailed drawings
connection diagrams

House Model-Making, How to Do, see also
Model Maker's Tools
materials used
how to plan
scale reduction, how to figure
tools required
wall thicknesses, how to figure
partitions, how to locate
cement, use of
chimney, simulation of
exterior details, how to make
artificial trees, how to make
finishing details

House Numbers, How to Make
jig or coping saw, use of
outdoor plywood, use of
stakes, iron pipe, use of
squared drawing, how to use

House, see Remodeling

House Trailer, How to Build, Part I
marine plywood, use of
pipe and fittings, use of
welding, application of
canvas parts, details of
screen door, construction of
stove, how to install
channel iron, use of
wheels and axle mounting details
trailer hitch, how to make
trailer hitch, commercial
running gear, commercial type, use of
ice chest installation

House Trailer, Part II
detailed drawings
sleeping arrangements
wings, how to open
tent frame assembly
storage compartment details
window curtains, use of

House Trailer, Truck-Mounted, How to Make
fitting to pick-up truck size
body assembly, detailed drawing
welded angle iron, use of
framing details
storage lockers, how to install
gas stove, installation of
sleeping accommodations
toilet facilities
mounting on truck, data on
materials required

Humidifier Control, see also Air Conditioning
wiring diagram
mounting brackets, how to make
installation details
float arm modification
mercury switch, use of

Humidor, How to Make
base and top, lathe turning of
lantern globe, use of
rabbeting details
paraffin, use of
dimensioned drawings
finishing details

Hunting Bows, see Archery

Hunting Knife, How to Make, see also Small Tool Sharpening, see also Knives From
Hacksaw Blades
mill file, use of
materials required
blade types, diagrams of
blade blank, how to heat
blade blank, hammer forging
blade blank, rough grinding
blade, polishing of
tempering, data on
leather handle, roughing out
handles, finishing
hand honing, methods of

Hydraulic Lift, How to Make
principle of
motor driven pump, use of
applications of
snowplow, use with
manual controls, how to arrange
hydraulic scoop application
hydraulic transmission unit, speed control
hydraulic endgate lift, how to build

Hydraulic Press, How to Make
capacities of
railroad rail, use of
pneumatic plunger, details of
piston stroke, data on
operation, sequence of
check valves, location of
hand pump, use of
pump cylinder, construction of
assembly instructions
detailed drawing
tank and pipe details
pump details
air unit, data on
materials required

Hydraulic Ram, How to Make
installation parts drawing
principle of
drive head, relation to
power chart
lifting height, relation to
figure
sighting level, use of
spring flow chart

Hydraulic Ram
pipe fittings, use of
drive pipe size chart
construction details
drill rod, use of
welding, use of
cylinder and piston construction details
pipe size chart
tank and ram support details
stroke adjustment

Iceboat, How to Build
materials required
Incinerator, see Outdoor Fireplaces
Incinerator, Movable Type, How to Build
flat iron, use of
hand truck wheels, use of
metal mesh, use of
Indicator, see Wind
Inlays, see Enamel
Insects, see Garden Pest
Insulation, Data On
insulation, types of
location in house
vapor barrier
venting spaces
estimating amount
loose fill, use of
flexible insulation
rigid board types
masonry walls, how to insulate
reflective foil, use of
storm sash, how to hang
weatherstripping, how to install
caulking, use of
curtain walls
Iron, see Electric Iron Repairs
Iron Finishing and Refinishing, How to Do,
see also Wrought Iron, see also Rust
Removal, see also Spray Painting
rust, damage by
primer coat, proper mix
galvanized iron, data on
ornamental iron
lawn furniture, care of
rust removal
Ironing Board with Folding Legs, How to Make
scrap lumber, use of
hinges, use of
stiff wire, use in bracing
Ironing, Use of Aluminum Foil In
Ironing Board Holder, How to Make
door mounting details
detailed drawing

J
Jamb, see Door
Jewelry, How to Make
materials required
tools needed
squared drawings, use of
napkin clasps
napkin ring
filigreed bracelets
pins and brooches
locket
safety catch
lapellieres
identification bracelet
bullet, ornamental use of
picture pins
costume jewelry
nutshells, use of
Jewelry Boxes, How to Make, see also
Plastics
materials required
tools required
construction drawing
assembly details
finishing techniques
lining

Jewelry Box with Trick Lid, How to Make
construction drawing
materials required
tools required
finishing details

Jigsaw Made from Sewing Machine
shuttle mechanism, removal of
stroke, regulation of
motor, mounting of
insecticide sprayer, use of
tension device, how to make
detailed drawing

Jigsaw, Metal Cutting, How to Adapt
bandsaw blade, use of
blade section, how to cut
blade section, how to grind
roller guide, adaptation of
jigsaw blade selection chart
teeth, types of
guides, data on

Jigsaw Projects, How to Make
children's items
lawn items
doorstop
cat bench
clothes hamper
clothes hangers
boothblack
drawer pulls
non-stooping doorstop
acrobatic toy
house numbers
lawn ornaments
novelty items

Joint Making
wood joints, how to make
lap spliced
middle half lap
end half lap
dado joint
half dovetailed dado
dadoed box corner
cross half lap
halved-and-mitered corner
rabbeted-and-grooved drawer joint
mortise and tenon
haunched-tenon
strength tenon
cutters, types of
tenoning jig, use of
pattern sawing

Joints, see Dowel

Jointer Adapter, How to Make
construction drawing

Jointer Adapter, How to Make

Jointer Blade Setting Tip

Jointer Sharpening

hand honing
power honing
grinding, general data
grinding on circular saw
grinding on drill press
blades, remounting in cutter head

Jointer Techniques

table alignment
cutting with grain
edge planing
mouldings, how to make
surface planing
tenons, how to make
rabbits, how to make
square tapers, how to make
round and polygon shapes, how to make
stopped chamfers and recesses

K

Kerfing, For Bending Wood, How to Do, see
also Veneering
saw setting for kerf technique
kerfing table, cut spacing
how to bend kerfed parts
how to measure for kerfing
closed kerfs, open kerfs
end kerfing
clamping methods
veneer, use of

Kitchen, see Camper's Kitchen

Kitchen Planning, How to Do
basic arrangements
the U-shaped kitchen
L-shaped kitchen
corridor type
single wall type
storage centers
preparation and cleaning centers
storage and counter requirements
ready made cabinet sizes
cooking center
storage space, how to figure
scale models, use of
windows and doors, moving of
cabinet heights, clearances, spacing
ventilation
lighting
ready made cabinets, installation of
base cabinets and counters
base cabinets, how to build
detailed drawings
materials required
construction data

wall cabinets, how to make
wall cabinets, how to mount
base cabinets, construction of
drawers, roller bearings for
counter tops, covering for
doors, sliding type
valances and drop ceilings
snack bars, construction of
built-in conveniences, how to install
modern appliances, how to install
Kitchen Food Chopper Bracket
description
construction drawing
Kitchen Roll-Out Cabinet, How to Build, see also Towel Drier
materials required
construction drawing
shelf details
casters, data on
linoleum, use of
Kitchen Shelves, How to Build
materials required
construction drawing
scroll saw, use of
fitting methods
shelf details
casters, data on
linoleum, use of
Kites, How to Make
box kites
materials, factors in
twine, weight of
lifting power, amount of
twine-lift chart
construction drawings
bow kite
principles
glue, use of
paper, use of
parchment, use of
cellophane, use of
airplane cement, use of
Knitting Table, How to Make
materials required
paper pattern, use of
construction drawing
assembly details, data on
accurate joint fitting, data on
wood rasp, use of
finishing details
Knife, see Hunting
Knives from Hacksaw Blades, How to Make
grinding, data on
shaping methods
grease wheel, use of
handle, forming of
cutlery bob, use of
files, use of
Knots, How to Tie
terminology
"working" meaning of
rope sections
end knots
back splice
wall knot
shoestring knot
slip knot
square knot
surgeons knot
bends
binder-twine bend
sheet bend
slippery sheet bend
weaver's knot
single carrick bend
double carrick bend
anchor bend
clove hitch
half hitch
double half hitch
slippery half hitch
timber hitch
single blackwall hitch
taut line hitch
pipe hitch
stopper hitch
rolling hitch
double blackwall hitch
hitching tie
cat's paw
hackamore
sheepshank
package tie
packer's knot
single bowline
Texas bowline
bowline on a bight
running bowline
lariat loop
man-harness loop
becket hitch
larkspur
strap knot
sack tie (miller's knot)
eye splice
short splice
long splice
worming
parcelling
serving
round seizing
racking seizing
singing, tips on
Knurling On Your Lathe, How to Do, Part II
knurling tools
lathe set-up for
knurling, special techniques
Knurling, Part II
type of knurls
oiling, methods of
pressure, degree of
test patterns, how to make
knurling rollers
face knurling
L
Ladder, see Stepladder
Ladder Aides
window tie, how to make
abrasive, use of
painting stand, ladder used as
extra shelf for, how to make
Ladder, Attic, Disappearing, How to Make
materials required
detailed drawing
counterbalancing, data on
sand, use of
Laminates
Description
Uses of
Roll type, how to cut
Sheet type, how to cut
Positioning, methods of
Bonding techniques
Cement application of
Finishing, file use of in
Edge facing, how to apply
Sink openings, how to cut
Poor bond, repairs to
Heat lamp, use of
Seams, how to cut
Seams, how to hutt
Edges, built-up
Edges, trim for
Lamp Bases, How to Make from Jugs
Toggle bolt, use of
Commercial socket, use of
Lamps, How to Re-Wire
Old wire, use of
New wire, splicing of
Lamp, Pin-Up Type, How to Make
Materials required
Detailed drawing
Assembly techniques
Mounting details
Lamps, see Table Lamps
Lampshades, How to Make, Part I
Frame, selection of
Frame, how to wrap
Linings, patterns for
Fabrics, selection of
Linings, how to cut and fit
Trimming, types of
Bias drape, method for
double-box pleating, how to make
Shirred ruffle, how to make
Skirted shades, techniques for
Square shade
Lampshades, Part II
Materials required
Sewed pattern
detailed drawings
Basket weave, methods of
Louvers, use of
Scroll work, use of
glue, use of
Landscaping for the Home
Rough planning
detailed planning
Model, use of
trees, location of
trees, types of
Shrubbery, use of
corner planting, details of
Border planting
Bald stock, use of
Planting techniques, data on
Flowers, use of
balance, how to achieve
Vines, use of
Rock garden, how to plan
Area landscaping
Lathes, see Metal
Lathes, see Modelmakers'*
Lathes, see Wood
Latticework, How to Make, see also Trellises, see also Arbors
Materials required
Assembly methods
Finishing details
Joint drawing
Lawn Aids
Crabgrass, elimination of
Lawn Care
Watering limitations
New lawns, establishing
Grading
Soil preparation
Manure, use of
Seeding, methods of
top dressing, formula for
Burlap, use of
Nozzle, substitute for
Hose, how to patch
Sodding
Wooden pegs, use of
Under-tree areas, treatment of
Winter grasses
Old lawns, how to renew
Poor soil, effects of
Improper grading, results of
Cultivation
Plant food, addition of
Plant foods, composition of
Rolling, methods of
Ruts, elimination of
Watering techniques
Mowing methods
Mowing, correct grass length in
Rakes, use of
Mulching, methods of
Lawn Furniture, How to Make, see also
Barbecue Cart
Materials required
Construction drawings
Knock-down construction
Adirondack chair
Porch chair
garden lounge
Porch glider
table and bench set
Lawn Furniture, rustic type
Chairs, bent wood type
Raffia, use of
Chair cut from log
Saplings, use of
Split logs, use of
Lawn Furniture Made From Electrical
Conduit
Materials required
Construction drawings
squared patterns
aluminum tubing, limitations of
japanned finish, use of
bending jig, how to make
sand, use of in bending
linoleum, use of for tops
linoleum, edge finish for
spring cushions, how to make
awning canvas, use of
leather trim, application of
metal finishing, data on
Lawn Mower Roller, Replacement Of
pipe, use of
bearings, provisions for
mounting details
Lawn Mower Storage Tip, see also Garden
Tool Rack
leather belt, use of
Lawn Mower Sharpening
metal turning lathe, use of
tool post grinder, use of
mower, how to dismantle
mower blade reel, lathe mounting of
grinding angle, adjustment of
guide, use of
shear plate, how to mount
manual operation, data on
electric motor, use of with hand stone
motor speed, regulation of
blades, truing up
lubrication
Lawn Mower Light for Night Mowing
bicycle light, use of
generator, belt driven
Lawn Mower Gears, Repair Of
nail, used as shaft pin
Lawn Mower Bed Knife Adjustment
screen door spring, use of
spring tension, data on
Lawn Mower Sharpening Aid
wheel crank, how to make
vise, use of
wheels and reel pinions, removal of
bed knife, set of
grinding compound, formula for
lawn mower tr action, how to increase
Lawn Mower, Made into Trimmer
cutting of parts
welding, use of
handle, re-shaping of
Lawn Mower, Hand Type, How to Motorize
motor types usable
drive mechanism, details of
de-clutching, method of
motor mounting details
Lawn Mower, Rotary, How to Make
materials required
detailed drawing
welding, use of
assembly, data on
4-cycle engine, use of
front wheel, adjustment of
gine mounting, data on
handle and brace, how to make
Lawn Mower, Power Type, Tractor Seat For
materials required
detailed drawings
clutch control mechanism
throttle extension
steering mechanism
trailer hitch, use of
welding, use of
bicycle seat, use of
handlebars, how to form
semi-pneumatic wheels, data on
Lawn Umbrella
Lawn Snack Tables and Lantern, How to
Make, see Snack Trays, Serving Trays, Tea
Cart
materials required
pull-apart drawing
squared pattern
design cut-out, pattern for
interlocking parts, details of
tin can, use of metal from
cut-outs, how to make
cone, how to form
design, application of
mounting details
Lawn Table and Chair from Plywood
materials required
construction drawings
patterns, how to use
cutting, details of
assembly, instructions for
finishing
Lawn Tables and Chairs of Wrought Iron,
see also Wrought Iron
materials required
construction drawings
welding, use of
riveting, use of
boltsed construction
bending construction
bending jig, how to make
caucic soda, how to use
finishing details
construction
Lazy Susan Serving Hatch, How to Build
materials required
construction drawing
assembly details
locking mechanism
wall installation data
Lazy Susan Table and Benches
materials required
construction drawings
wagon wheel, use of
framing details
squared decoration patterns
flooring, use of for top
assembly details
benches, details of
tree limb sections, use of
marine varnish, use of
Leather Braiding, How to Do
materials required
strap parts required
braiding, steps in
Turk’s head, braiding of
terminology
buckles, how to cover

Leather, How to Tool
tools required
types of leather suited to
celluloid, use of
design, proper types of
plate glass, use of
moccasins, squared pattern for
skiving, how to do
belts, how to make
pillow covers, how to make
embossing, how to do
lacings, details of

Legs, see Table

Lens Mountings, Experimental, How to Make
cardboard tubes, use of
split wire retainer rings, use of
friction mountings
heat expansion, allowance for

Letter Press, How to Build
pipe fittings, use of
spindle mounting details
hardwood, use of
lathe, use of
construction drawing

Lettering with Masking Tape
tapes, types of
taping, methods of
sketch or trace letters
corners, treatment of
curves, formation of
direct lettering
tape width chart
outline lettering methods
paper pattern, use of
paint spray gun, use of

Lettering, see Photo
Lift, see Hydraulic
Light, see Lawn Mower
Lights, see Shop
Lights, see Yard
Lighter, see Cigarette

Lighting, Data On
overall illumination
specific area lighting
glare, elimination of
mirrors, use of
indirect lighting
kitchen lighting
reading light, angles of
bedroom lighting
desk lighting specifications
bulb sizes
bulb types
cove lighting
fluorescent lamps, use of
reflective surfaces, how to use

Lighting Fixtures, How to Make
ox yoke chandelier

materials required
squared pattern
bows, how to form
yoke, how to make
mounting detail
recessed ceiling light, how to make
auto headlight, use of
house socket, installation of
switch, how to mount
Lighting Fixtures
materials required
dimensioned drawings
plastic, use of
tubular filament bulbs, use of
cove lighting fixtures
modern ceiling fixture, how to make

Lighting, see Photo

Linen Closet, How to Make, see also Storage
Space
detailed drawing
materials required
assembly details

Linoleum and Floor Tile, How to Lay, see also Tiling Walls and Floors
tools required, details on
linoleum knife
dividers
toothed trowel
linoleum types, details on
feature strip
border strip
plain felt base
duplex felt base
burlap base
linoleum designs, details of
plain color
marbelized
streaked
embossed inlaid
straight-line inlaid
first pointers in laying
extension through doorways
seams, location of
base floor, preparation of
methods of laying
wall-to-wall
simple border
border and feature strip
personalized designs
scribing, purpose of
scribing, how to do
cement, application of
cement, drying techniques
floor tile, general laying data
floor tile, designs in
tile sizes
lining felt, how to lay
border, how to square
wooden square, use of
wall linoleum, data on
standard sizes
chalk line, use of
cement, application of
corner molding, fitting of cap mould, how applied
countertops, data on
duplex lining, use of lining, used as pattern
sink opening, how to cut

cove strip, how to apply
cap mold, installation of countertop mold, how to use

Linoleum repairs, data on patches, how to make

matching, data on

Linoleum Cove Base
cove base, how to set
flash type, how to set
color, matching of metal or plastic corners

paper pattern, use of true edge, location of corner fitting, allowances for cement, application of forming tools, use of moulding, fitting over plain butt, how to form asphalt, how to heat form asphalt tiles, how to score asphalt tile, how to weld

Live Baits, How to Use
salamanders
goldfish
hafenrymets
hooking worms
grasshoppers
crickets
nymphs
frogs
soft shell crayfish
minnows
live bait, preservation of

Live Bait, Tips On
troot bait, methods of use
leaf and twig, use of
ball of clay, use of
eggfish bait, how to carry
jar and clothespin, use of
earthworm locating tip
crawfish seine, how to make wooden scoop, use of burlap sack, use of minnow net, how to make cellophane, use of

Live Bait Boxes, How to Make
detailed drawing
materials required
construction data

Living Room Furniture, Part I, see also Upholstering

materials required
construction drawings
drawer details
kneehole desk
commode
step table
cocktail table

corner table

Living Room Furniture, Part II
sectional sofa chairs, how to make
framing details
materials required
construction drawings
upholstering details
spring units, types of
spring units, installation of tufting, methods of
floor lamp, how to make
table lamp, how to make
materials required
design patterns
standard fittings, use of

Locks, Tips On
hast, improvements, how to make shackles, how to change keyhole guard, how to make baby-proof lock, how to make

Locks, Mortise Type, Tips On
mechanism, operation of repair parts, how to buy
lock failures, causes of
loose front plate
sluggish bolt action
broken springs, how to replace rusted tumblers, how to free lubrication, correct types of cleaning, proper solvents for

Log Burning, Tip On

Log Cabin, How to Build
logs, preparation of foundation, how to build framework, details of building paper, use of plywood, use of sill details
corner posts, how to make
roof framing details
floor plan

fireplace construction details

chimney construction details

interior finishing

Loom, Hand Type, Techniques
simple looms, details of table looms, structural details
"Four-harness" looms
loom, how to thread
work patterns

Lumber Storage Rack, How to Build, see also Workshop Planning

floor and wall type, details of wall rack
overhead ceiling rack
pipe and fittings, use of

Luminous Paint, Data On
application techniques
lumi-photographing method
paint, how to make
paint, commercial type
activation of
vehicle and thinner, data on
vehicle-pigment mixing chart
pigment phosphorescence chart
glow, intensity of
carrying power

M

Machine Tool Tips
Machinist’s Tool Box, How to Make, see also Tool-Box
construction drawing
materials required
compartments, details of
Magazine Baskets, How to Make
lathe turnings, use of
jigsaw type, pattern for
Colonial design
simple box type
dowels, use of in construction
Magazine Tables, How to Make
woods suitable for
construction drawings
lathe turnings, how to make
dadoes, how to make
hand holes, how to cut
finishing details
Magnets, Tips On
magnetic rack
magnetic tack collector
brush holder, use as
fish hook dispenser, use as
tools, how to magnetize
magnetic door hook holder
magnetic can top remover
magnetic ball bearing assembler
Magnifiers, How to Make
lenses, types of
magnification, how to gauge
lens combinations, how to figure
lenses, how to mount
illumination, how to provide
construction plans
magnifiers, use of
Mailboxes, Tips On
decorative ideas
protective coverings for
supports for
locations for
Mailbox, Wooden, How to Make
construction drawing
materials required
magazine rack for
Mailbox, Hammered Copper, How to Make
sheet copper, use of
detailed drawing
lettering technique
cutting methods
asphalt, use of
nitric acid, use of
nitric acid, precautions
Mandrel, Cone Type, Adjustable, How to Make
materials required
detailed drawing
lathe work details
uses of
Marble Finish, Water-Floated
materials required
gallon can, use of
floating technique
dipping methods
drying
Masking, see Lettering
Masks, see Paper
Matrix Casting
chalk, use of
plaster of Paris, use of
metals used in casting
casting, how attached to work
finishing
Measuring Tools, Data On
inside micrometer
outside micrometer
calipers
hole gauges
telescoping gauges
radius gauge
thread gauge
depth micrometer
Measuring Tools, see Gauges
Measuring Tools, see Micrometers
Medicine Cabinets, Tips On
Merry-Go-Round, How to Build, see also See-Saw
construction drawing
power lever mechanism, how to make
base and framing details
Merry-Go-Rounds
welded pipe, use of
construction drawing
wood rim details
bearing details
Metal, Art, Hammering
materials, type of
tools required
squared patterns
plant holder, how to make
cigarette box, how to make
coaster rack, how to make
Metal, Art, Hand Tools, Data On
forming stakes
stake holder
forming files
forge
Bunsen burner
blowtorch
gas blowpipe
tweezers
tongs
snips
flat nosed pliers
chain nosed pliers
end cutting nippers
wood molds and mallets
vibrating tool
spinning lathe
electric hammer
chasing hammer
riveting hammer
ball pein hammer
forming hammer
embossing hammer
raising hammer
bottoming hammer
chasing tools and stamps
nibbler
brake
punch
slip roll
shear
shear clamping head
drill press
metal cutting bandsaw

Metal, Art, Hand Tools, see Punches, see Snips

Metal, Art, Modeling
tools required
materials suitable to
squared drawings
paper patterns, use of
bending techniques
fastenings, types of
cutting method

Metal, Art, Modeling
cylindrical shapes, how to make
slip roll, use of
cone, how to form
end curl, how to make
double curl, how to make
spiral, how to form
round corner technique
wire, how to bend
seams, types of:
plain butt
beveled butt
butt strap
plain lap
offset lap
flat lock
outside groove
inside groove
drilling, methods of
riveting, how to do
stretch-out of cones, how to make
circle circumference chart
cone projects
spiral projects

Metal, Art, Projects, see also Tin Can Projects, see also Copper, Hammering
simple tools, use of
materials required
hand tooling, how to do
photographs, use of
design details, execution of
defects, methods of, how to make
round raising, how to do
oxidizing, how to do
hacking
mounting
stationery box, how to make

waste basket, how to make
ashtray, how to make
bas relief decoration
plaques and trays, how to make
cigarette boxes, how to make

Metal Castings, How to Make, see also Electric Arc Furnace
wax pattern, making of
plaster of Paris, use of
plaster mix, how to make
mold, how to heat
wax, removal of
vents, how to make
risers, how to make
metal, how to melt
metal, how to pour
modeling clay, use of
glue, use of
 crucible, how to make
forge, how to use
gas burners, how to use
castings, how to finish

Metal Casting Tips
cement, use of
silicate of soda, use of
ball end tool, how to make
ball end tool, how to use
pinholes, how to eliminate
stereotype metal, use of
steel wood, use of in welding

Metal Cutting, see Bandsaw
Metal Cutting, see Jigsaw

Metal Lathe Accessories, How to Make, see also Collet Attachment
ball bearing center rest
detailed drawings
bearing details
adjustments
mounting
lathe collet, how to make
adapter plate, how to make
materials required for
detailed drawings
plate, capacity of

Metal Lathe Accessories
pipe center, how to make
materials required
specifications
shank, how to turn

Metal Lathe Accessory Rack
detailed drawing
materials required
assembly details

Metal Lathe Tool Tips
tool control aid
lathe tool setting guide

Metal Lathe Techniques
lathe parts, identification of
leveling, correct method of
headstock play, how to eliminate
laminated shims, use of
carriage wear, correction of
lathe centers, aligning of
test bar, use of
centering the work, methods of
tailstock centers
combination square, use of
prick punch, how to use
dial indicator, use of
cutting tool bits, how to grind
rake and clearance angles
Metal Lathe Techniques
tapers, how to turn
tapers, measurement of
tapers, standard, use of
magnetic chuck, use of
lathe dog, use of
angle plate, use of, on faceplate
steady rest, use of
drilling, how to do
reaming, how to do
reamer, how to sharpen
crotch center, use of in cross drilling
drill bits, how to grind for various metals
boring tool, how to use
boring tool, use of in thread cutting
boring tool, how to mount
boring tool, setting in tool post
boring tool, angles of
boring tool, how to grind
Metal Lathe Techniques
reaming procedure
tapping procedure
grinding procedure
taps, measurement of
taps, types of
thread gauge, how to use
grinding wheel, use of
expansion of work, prevention of
grinder, setting of
grinding wheel selection chart
grinding wheel speed and traverse chart
Metal Spinning, How to Do
pewter, use of
metal, how to mount
chucks, types of
chucks, internal
chucks, external
spinning rest, use of
flower basket, how to spin
ashtray, how to spin
dinner gong, how to spin
clock dial, how to spin
nut bowl, how to spin
sandwich tray, how to spin
vibrating tool, use of, in decoration
spinning, correct speeds for
metal covered forms, how to spin
Micrometer, How to Use, see also Measuring Tools
principle of
how to read
micrometer, adjustable, how to set
Milling Fixture for Metal Lathe, How to Make
detailed drawings
materials required
slitting saw, use of
thread cutting setup
angle, base and adapter plates
compound angle setup
Milling Techniques
milling machine, parts of
cutters, types of
slab milling
side mill
slitting saw, use of
cutters, how to sharpen
shell mill, use of
swivel vise, use of
end mill, use of
metal-milling speed chart
standard operations, how to do
Milling Technique, Metal Lathe
cutter chuck, how to make from drill
standard feed
climb feed
accuracy, checking of
stub milling arbor, how to make
speed and feed chart
long milling arbor, use of
large work, how to handle
Mirror, Modern Frame, How to Make
detailed drawing
materials required
Mirror, Lyre Frame, How to Make, see also
Colonial Mirrors
squared pattern
materials required
construction method
rabbeting detail
finishing
Mirrors, It's Done With
decorative use
effect
seeing into corners
medicine chest door
reading negative
Miter Boxes, Tips On
miter box, how to make
wide-work miter device
miter box, steady mounting of
Mixer, All-Purpose, Power Type
construction drawing
parts required
electric motor, use of
welding, use of
drum support, details of
runners, use of in moving
assembly, details of
mixer, use for feed and seed
mixer, use for concrete
Mixer, see Cement
Model Boats, How to Make
tools required
quick-setting glue, use of
hull drawing
masts, details of
bristles, use of
shrouds, data on
rigging, data on
backstays
hatches
yards
spanker boom, how to make
gaff boom, how to form
lifts, how to make
sails, how to cut
fitting methods
spanker sail, how to fit
gaff sail, how to mount
mast stays, details of
fore and jib stays
jib and stay sails
bowsprit and jib boom
braces
vanes
sheets
paint, use of
flags, pennants, types of
containers, types of
provisions for mounting in bottle
container, how to seal
model stand, how to make
glossary of sailing ship terms
Model Boats, Bottle Mounting, Details Of
tools required
materials required
folding rigging, details of
stationary rigging, details of
mounting techniques
Model Boats, Gas-Engine Powered, Speed Type
materials required
tools required
detailed drawings
squared patterns
hull construction details
assembly methods
engine, installation of
propeller shaft, mounting of
rudder post, data on
Model Boat, Wave-Driven
principle of operation
driving vanes, how to make
vane mechanism, how to make
vane mechanism, how to mount
materials required
Model Boat, Racing Sloop Type, How to Make
materials required
detailed drawings
full-size half-breadth patterns
molds, how to cut
deck crown, how to mark
template, use of
gluing, details of
stem, how to cut
planking rabbet, how to cut
transom, data on
keelson, fitting of
chines and gunwales, details of
planking, how to taper
planking, how to lay
planking, fastenings of
keel, how to cast
keel, how to mount
floor timbers, how to lay
rudder, pivoting details
chain plates, details of
steering gear, details of
mast step, how to make
tiller arm, how to mount
sails, materials for
leach, details of
luff, details of
set, how to achieve
sails, fastenings
sheets, how to achieve
shrouds, how to fasten
finishing
Model Plane Control Line, How to Make
detailed drawing
elevator control mechanism, how to make
elevator control mechanism, how to mount
piano wire, how to attach
central pivot, how to make
control stick, how to connect
control wires, how to rig
ball bearing, use of
controls, how to use
climb, how to achieve
dive, how to achieve
control cables, care of
rudder, adjustment of
plane speed, how to compute
Model Plane Motor Cranking Device
hand drill, use of
propeller hub socket, use of
Model Plane Propeller Carving Aid
Model Plane, Electrically Driven
materials required
parts required
detailed drawing
soldering, use of
cementing, how to do
plane assembly, data on
control, how to achieve
motor mounting
power unit, details of
plane, how to fly
Model Plane, Gas-Engine Powered, How to Make
engines, types of
materials required
parts, how to cut
pattern, how to use
jig saw, use of
cementing, techniques of
assembly, details of
assembly drawing
gluing, mounting diagram
finishing
doping
glide testing
power flying
fuel, control of
Model Railroads, Data On, see also
Transformers, How to Make
platform, how to make
track diagram
insulating pins, use of
wiring diagram
train movements, diagram of
remote control equipment, how to use
s.p.d.t. toggle switch, use of
speed, regulation of
transformer, use of
whistle control, operation of
smashups, how to prevent
Model Railroad Track Tool, How to Make
Model Railroad Multiple Train Control
track diagram
wiring diagram
controls, how to use
Model Railroad Multiple Control Panel, How to Make
radio cabinet, use of
electrical materials
assembly details
wiring diagrams
Model Railroad Automatic Slow-Down Control
wiring diagram
track, alterations to
insulated wire, use of
Model Railroad Tracks, How to Clean
cleaning tool, how to make
Model Railroad Wrecking Tongs, How to Make
materials required
construction drawing
how to use
Model Train Switch Tips
Model Train-Storage-Control-Box
construction drawing
materials required
compartments, design of
wiring details
rabbeting, use of
finishing details
Model Railroad, Fences For
soda straws and thread, use of
Model Stagecoach, How to Build
materials required
construction drawing
squared patterns
body details
spring action details
chassis, detailed drawing of
wheel details
assembly instructions
mounting base, how to make
finishing details
Model Train Remote Control Switch
materials required
detailed drawings
wiring diagram
solenoid, how used
Modeling, see Metal, Art
Modelmaker's Bench Vise, How to Make
materials needed
pull-apart drawing
Modelmaker's Drill Press, How to Make
stock materials, use of
pipe, use of
scrap metal, use of
assembly drawing
detailed construction drawing
pulley details
chuck, data on
jackshaft, machining of
bearing, installation of
head, how to turn
head, how to chuck
rawhide mallet, use of
chuck, mounting details of
table raising mechanism, details of
Modelmaker's Tool Tips
nail polish, use of
hand mirrors, use of
fingernail scissors, use of
Modelmaker's Equipment Ideas
C-clamps, how to make
anvil, how to anchor
magnifying glass, how to mount
abrasives, tips on
chisels, how to make
Modelmaker's Lathe, How to Make
construction drawings
wood construction, details of
motor unit, data on
tool rest, details of
shaper, how to make as accessory
Modelmaker's Tips
Modelmaker's Metal Lathe, How to Make
tools required
angle iron, use of
bronze parts, details on
headstock, how to make
tailstock, how to make
chuck, data on
slide rest, how to make
motor and countershaft details
assembly drawings
faceplate, how to make
Mold, see Flagstone
Moldings on a Shaper, How to Make
shapers, types of
shaper head, details of
multiple cuts, cutters for
shaping with pattern
shaping with guides
shaping with hold-down
shaping against collars
fence, setting of
work, how to feed
shaper, how to set up
segment fence, how to set up
Moisture Molding, Mortising
Mortar, Mortising
Mortar
Motor
saw
shaper
construction
drill
work,
speed,
square
vise,
stop
steam
caulking,
assembly
woods
wave
bead
V
molding
patterns,
cutting,
chisels,
fence,
C-clamp,
fence,
flat
hardboard,
crankpin
valves,
carburetor
air
fuel
manifold
new
and
cleaner,
cleaner,
clearance,
iron
and
block,
rings,
Rewinding,
pump,
Mount,
press,
press,
use
Box
Box
work,
schedule
guides,
how
Tips
Special
Tips
with
tips
with
legs,
work,
data
guides,
how
Proofing,
how
details
details
operating
system
diagram
with
trials
see

Moisture Proofing, see Basement
Mortar Box for Plaster, How to Make
hardboard, use of
construction drawing
assembly details
caulking, use of
Mortar Box from Oil Drum
drum, how to cut
steam cleaning, use of
flat iron legs, welding details
Mortising with Circular Saw
stop block, use of
fence, how to set
tenons, how to cut
Mortising Tips
C-clamp, use as split-preventive
vise, use to assure tight joint
Mortising with Hollow Chisel
square holes, how to bore
chisel mounting, data on
bit clearance, data on
fence, special technique with
speed, adjustment of
large work, how to handle
bits and chisels, types of
chisels, sharpening tips on
drill press, control of
cutting, tips on
work schedule for tables
Motor, see Inboard, see Outboard
Motor Mount, see Electric Motor
Motor Rewinding, see Electric Motor
Motor Tips, see Electric
Motor Tune-Up, Auto, How to Do
air cleaner, care of
air cleaner, cleansing of
fuel and exhaust system diagram
fuel pump, operating principle
manifold details
carburetor details
carburetor adjustments
compression gauge, use of
valves, troubles with
worn guides, replacement of
timing chain or gears, how to check
cylinder bore, how to check
new rings, how to test
 crankpin bearing clearance
cylinder head stud tightening sequence
thermostat, how to check
rocker arm and valve troubles
battery, how to check
hydrometer, use of
spark plugs, how to check, clean, set
gap gauge, how to use
spark plug, correct installation of
distributor, adjustment of
distributor, repair of
ignition parts diagram
breaker points, care of
condensers, capacity of
lubrication, data on
Motors, see Toy
Mountings, see Lens
Movie Film Developing, How to Do
reels, types of
drum type reel, how to make
drum type reel, how to use
flat type reel, how to make
round trays, use of
tray development, tips on
Movie Projection, see Projection Booth
Movie Titler, How to Make
seasoned hardwood, use of
construction drawing
auxiliary lens turret, how to make
fadeaway titles, how to make
wipe-on and wipe-off titles, how to make
rolling strip for printed descriptions
movie titler, technique

N
Net, see Bait
Noise Control, see Workshop
Nonconductors, see Electroplating
Novelties for the Home, How to Make, see
also Tin Can Projects
cutout Canadiens
kitchen novelties
salt and pepper holders
plant shelf
book ends
plate shadow boxes
clock case
tea cannister
plant box
rustic novelties
ceiling fixtures
table lamp
bridge lamp
wall lights
tables and shelves
gun rack
Novelties, see Paper
Novelties, Jigsawed Table
egg server
napkin and place card holder
plate and saucer holder
Novelty Projects
flower girl vase
candlestick
paperweight
Occasional Chair, How to Make

cabinet woods, use of
construction procedure, diagrams for
full sized patterns, use of
mortising, details on
chair frame assembly plans
upholstery rabbit, how to cut
assembly methods
gluing, details of
finishing techniques
upholstery, how to apply

Occasional Chair
construction drawing
handsawing, use of
lathe, use of
hollow chisel, use of in mortising
assembly instructions

Occasional Table, How to Make
veneer, use of
 glue, use of
construction drawing
squared patterns
lyre base, details of

Oil Burner Servicing, How to Do
vertical rotary burner, diagram of
gun type burner
flame adjustment
oil-air mixture, data on
heat losses, how to figure
heat losses, how to correct
low pressure gun type burner, nozzle details
high pressure nozzle, diagram
pot type burner, forced draft type
furnace air leaks, correction of
flue details
proper flame, how to recognize
oil burner trouble-shooting chart
heating plant, how to insulate
fuel lines, how to clean

Oil Changes, Auto, Data On, see also Motor
Tune-up
engine lubrication diagram

Oilstones, Data On, see also Abrasives
utility file
scythestone
knife sharpeners
combination bench stone
gouge slip
round edge slip
auger bit stone
soft Arkansas pocket stone
stone box, how to make
leather strop
natural stones
new stone, oil bath for
hollows in stone, removal of
artificial stones
types of grits

Oilstone, Tips on Sharpening With
honing suggestions
strop, use of
edges, types of
sharpness, how to test

Ornaments, see Christmas Tree Ornaments

Outboard Motor Boat, How to Build
hull specifications
performance data
cutaway hull drawing
hatten seams, use of
frame construction drawing
frame dimension table
stem construction drawing
frames, how to assemble
keel construction drawing
keel, how to make
hull framing, how to assemble
saw, depth guides for

oil pressure line, drawing of
oil, deterioration of
oxidation, causes of
oil, contamination of
cylinder wear distribution, diagram of
dirty oil, damage caused by
fuel-air mixtures, proportions of
oil filters, data on
driving conditions, effect of on oil
sludge, effects of
bearing condition, effect of oil on
hull framing, alignment of
hull framing, final checking of
side planking, application of
materials list
bottom planking, application of
flooring and inside details
dry and trim details
painting and finishing
waterline, painting of
Outboard Motor Carrier, How to Make
construction drawing
building instructions
Outboard Motor Boat Handling
motor safety chain, use of
boat trailer, use of
types of outboard motor boats
boat, how to launch
boat, how to board
boats, passenger capacity of
life preservers, use of
boating gear, how to load
angle of motor on hull, how to set
traffic rules for boats
dock, how to approach
safety rules
Outboard Motor Servicing, How to Do
motor covers, how to open
propeller shear pin, how to replace
outboard motor parts, identification of
steering friction adjustment, how to make
gear lubrication, how to apply
motor cooling pump, principle of
sediment bowl, cleaning of
magneto breaker points, adjustment of
magneto parts, identification of
rewind starter, cord replacement in
motor, how to flush
motor, how to prepare for storage
motor, trouble-shooting chart for
Outboard Motor Steering Gears, How to Rig
installation diagrams
pulleys, location of
bronze core cable, use of
steering wheel drum, cable on
cable slack, data on
steering system, lubrication of
Outdoor Fireplaces, How to Build, see also
Incinerators, see also Barbecue
designs, types of
brick and rubble construction
steel plate, use of
grate, details of
hot-plate, installation of
fieldstone, use of, in construction
wooden forms, how to make
grate supports, insertion of
hinges, how to mount
form removal, burning out
portable grill, how to make
joints, welded construction of
cart support, how to make
wheels, details of
accessories, data on
two stone fireplaces
construction details
barbecue fireplaces, grill or range type
grill
cement barbecue fireplace
construction details
Outdoor Fireplaces, Three Designs
with built-in fountain
fieldstone
construction drawing
cement base
Outdoor Game Hints
Outdoor Game Layout, see also Shuffleboard
Court
layouts for:
soccer
lawn tennis
shuffleboard
field hockey
volley ball
soft ball
horseshoes
badminton
croquet
Outdoor Gym, How to Build, see also
Trapeze-swing
construction drawing
pipe and fittings, use of
concrete, use of
striking bag hanger
Oven, see Camping Oven
Overcoats for Tender Shrubs
pole fences
corrugated cases
burlap
cornstalks
Ozone Generator, How to Make
wiring diagram
parts required
operating principle
shock proofing, how to do

P

P.A. Amplifier System
construction details
wiring diagram
Paint Brushes, see Brushes, Paint
Paint Preservation, Tips On
turpentine, use of
can sealing, methods of
Paint Mixing Guide for Color Matching
color formula chart
blending techniques
pigment, treatment of
oil colors, use of
Painting, see Car painting, see Enameling
Painting, Interior and Exterior
primer, application of
sandpaper, use of
asphalt primer, use of
oil primer, where required
amount of paint, how to estimate
old paint, treatment of
paint, qualities of
blistered surface, cause and cure
alligatored surface, cause and cure
knots, treatment of
nails, how to prepare
wire brush, use of
dry checks, treatment of
sash and frames, reconditioning for paint
putty, application of
caulking, uses of
masonry walls, pointing up of	house paints, types of
roof paint, use of
weather conditions for exterior painting
special purpose paint, selection of
surface, preparation of
sanding methods
respirator, use of
dry mold, removal of
gutters and downspouts, repairs to
brushes and equipment required
mixing methods
brush strokes, direction of
painting procedure
sash, trim, and doors, painting sequence
metal painting, methods of
brushes, how to clean and store
interior paint, types of
water soluble paints
resin emulsion paints
calcimine
casein paints
textured paints
tools and equipment for interior work
painting preparations, interior
hardware, removal of
appliances, disconnection of
shoe molding, removal of
surfaces, how to clean
wax, removal of
cracks, how to fill
plaster, how to repair
crack filler, how to seal
painting sequence, interior
ceiling painting
laps, how to avoid
woodwork, tips on painting
varnish, application of
brushes, care of
starch coating
masking tape, use of
paint guard, how to use
Paneling, see Plywood
Pan Head, see Tripod
Paper Cutouts, How to Make
paper, types of
animal half-patterns
water colors, use of
Paper Folding, Uses Of
geometrical folding forms
paper projects
animated paper toys
belts, how to weave in paper
painter's cap, how to make
Paper Masks, How to Make
materials required
molds, how to make
modeling clay, use of
casein glue, use of
water colors, use of
step by step process drawings
finishing details
Paper Novelties, How to Make
lamination, how to do
laminated paper, properties of
forms, how to make
patterns, use of
projects
salt shaker, how to make
trinket box, how to make
artificial flowers, how to make
canape tray, how to make
lamp base, how to make
book ends, how to make
Paper Novelties
detailed drawings
straw server
cigarette box
artificial flower vase
Paperboard Toys, How to Make
paperboard, characteristics of
carton table
detailed drawing
chairs, how to make
playhouse, how to make
boat, how to make
trailer, how to make
truck, how to make
Pattern Making and Metal Casting, see also
Electric Arc Furnace
terminology
flask, how to make
cope and drag, locking of
sprue pin, use of
sand, use of
draft of mold, meaning of
draft of mold, effect of
gate, preparation of
metal, pouring of
split patterns, tips of
leather fillets, use of
metal casting shrinkage table
beeswax fillets, how to make
allowance for finish, how to gauge
two-piece patterns and cores, how to make
metal dowels, use of
lathe, use of
drill press, use of
corners, proper design of
foundry methods, sand molding
gas furnace, use of
rammer, how to make
mold, preparation of
vents, purpose of
crucible, use of
crucible tongs, use of
ladle, use of
borax, use of
mold, how to part
sand sifting, importance of
leveling, how to do
sprue pin, drawing of
metal pouring, tips of
mold, opening
casting, how to break out

Perimeter Heating
principles of
loop system
radial system
extended-plenum system
crawl-space-plenum system
lateral system
conditions suitable for
under-slab fill
moisture barrier
ducts, placement of
sheet metal ducts, installation of
vitrified clay ducts, use of
register openings, placement of
concrete plenum, casting of
crawl space requirements
plenum for crawl spaces
return air grilles
furnace, selection of
down-flow furnace
up-flow furnace, limitations of
temperature controls, use of

Phonograph Cabinet, How to Make, see also
Radio Cabinet
materials required
detailed drawings
construction data
finishing techniques
record player, installation of

Phonograph Records, Care Of, see also
Record Cabinet
records, how to break in
brush, use of

Photo Easel Making Guide, How to Make
masking tape, use of
ruled paper guide, use of

Photo Cable Release, Timer Operated
fastening detail

Photo Edge Printer, How to Make
printing box, construction of
tubular filament bulb, use of
platen, construction of
address negative strips, use of
decorative strip negatives, use of
pilot light, installation of
velvet light seal, use of
depth printer, general applications of

Photo Exposure Meter, How to Make
detailed drawing
materials required
rheostat, use of
mirrors, use of
comparison light, use of
rheostat scale, calibrating of

dry cell, replacement of

Photo Flash-Flood Combination Unit
detailed drawing
standard electrical parts, use of
photo flood assembly
flash assembly
wiring details
handle mounting details
reflector type, selection of
stand-mounting bracket, details of
off-camera mounting details

Photo Flash Synchronizer, How to Make
materials required
type of shutter suited to
spring metal, use of
contact, setting of
switch, adjustment of
lens board, mounting details of
wiring diagram
batteries suited to

Photo Flash Reflector, Tips On
saucer, use of

Photo Flood Lamp Changing Tip
use with movie camera

Photo Flood Reflector, How to Make
rat trap, use of
light socket, mounting of
baking pan, use of
pivot details

Photo Flood Spot Device, How to Make
magnifying lens, use of
clamps, use of
metal shield, how to make

Photo Focusing Attachment, How to Make
materials required
detailed construction drawing
cameras suited to
plywood, use of
typical uses
ground glass, use of
operating data

Photo Focusing Spotlight, Indoor Type
detailed drawing
materials required
assembly data
diffusing device, how to make
finishing tips

Photo-Lamp Control Unit, How to Make
wiring diagram
use with floodlight
flash data
6-volt focusing circuit
auto headlight reflectors, use of
batteries, use of
switches, how to operate
heating element, use of

Photo Lamp, Fluorescent, How to Make
actinic values, gauging of
mounting board, how to make
tube sockets, how to mount
Photo Lens Cleaning Tip
Photo Lettering, How to Do
show card black, use of
soapy water, use of
Photo Lighting, Data On
high floodlight
low floodlight
main floodlight
flash bulbs, use of
conflicting shadows, elimination of
natural and artificial light, treatment of
color, effect on lighting
light source, moving, effect of
light meter, use of

Photo Mounts from Cover Papers
materials, sources of
template, how to use
cover paper, how to cut
mount, how to stiffen
masks, how to make
assembly details

Photo Portrait Lighting for Personality
diffusion, use of
background, selection of
prominent features, treatment of
eye highlights, how to produce
stout subjects
slender subjects
subject, posing of
lighting diagram

Photo Printer with Automatic Switch, How to Make
construction drawings
ground glass, how to mount
60 watt bulbs, use as light source
safelight, installation of
masks, how to make
reflective paint, use of

Photo Print Timing, see also Darkroom Timer
electronic timer, how to make
wiring diagram
materials and parts required
construction drawing
safelight, incorporation of
dial, calibration of
push button switch, how to connect
exposure-time range
radio tubes, use of
sweep hand clock, use in calibrating

Photo Print, Writing On
fountain pen flashlight, use of
nail polish, use of
sandpaper, technique of use

Photo Reflector, Flat Lighting Type
deflectors, use of
camera positioning data

Photo Side and Back Lighting Tips On
three dimensional effect
how to achieve
lighting details

Photo Stand, How to Make
wire, use of
detailed drawing

Photo Tripod Low Angle Conversion, see also Tripod

Photos on Metal, Glass, and Pottery, How to Make
general techniques
negative requirements
surface cleaning data
chemicals used
gelatin mixture, how to prepare
chrome alum, use of
phenol, use of
gelatin solution, application of
dsensitizer, preparation of
vessels required
gelatin, how to sensitize
exposure, data on
masks, use of
fixing and finishing data
curved surfaces, special treatment of
detailed drawings
electric fan, use of
lacquer, use of

Picnic Table and Benches in Suitcase
construction drawings
materials list
assembly data

Picnic Table, see Children's Picnic Table

Picture Framing, Data On
plywood, use of
drill press, use of as router
shaper, use of
frames with glass
frames without glass
deep frame construction
plastic, use of
plastic frame construction drawings
strip heater, how to use
forming jig for plastic, how to make
mounting data
inlaid picture frame, how to make
hardwoods, use of
rabbeting details
back, removing of
glass, insertion of
picture, how to mount
picture framing tips

Pier, Boat Landing, How to Make
materials required
construction drawing
assembly data
rigging details

Pin-Up Lamps
glass brick, use of as shade
wood block, mounting of
Pipe, use of, general data
plumbing types
wrought iron pipe
steel pipe
water pipe fittings
pipe weight chart
pipe size chart
drainage pipe, special fittings for
pipe fittings, how to order
brass pipe, use of
copper pipe, use of
standard pipe threads
pipe runs, how to measure
threaded joints, how to make
plastic pipe, use of
plastic pipe, types of
plastic pipe, fittings for
plastic pipe, cutting solution for
copper tubing, use of
dimension chart, copper tubing
compression fittings, use of
solder type fittings, use of
soldering methods
solder, proper type of
copper tube, how to bend
copper tube joints, swedging of
leat pipe, use of
leat pipe, support for
leat pipe, joining to iron pipe
wiped joints, how to make
cast iron hub and spigot soil pipe, use of
soil pipe, assembly of
soil pipe, how to cut
cast iron soil pipe, fittings for
vitrified clay pipe, use of
vitrified clay pipe, how to cut
vitrified clay pipe, mortar joints in
clay pipe joining compounds
concrete pipe, types of
asbestos cement pipe, data on
porous pipe, use of
perforated pipe, use of
bituminized fiber pipe, use of
pipes, how to support
pipe size chart
Pipe rack and humidor, How to Make, see also Humidor
construction drawing
materials required
copper foil, use of
squared pattern
assembly details
humidifier detail
finishing data
Pipe, see Water
Planes, data on
planes, types of
block plane, how to use
plane parts:
ssole
ttoe
finger rest
mouth
blade
lever cap
lateral adjustment lever
heel
vertical adjustment screw
jack planes, how to use
floor planes, how to use
jointer plane, how to use
smoothing planes, how to use
work support, tips on
wood grain, effect of
end planing, how to do
cross planing, how to do
plane handling tips
plane care
plane sharpening, data on
blade alignment, data on
plane blade sharpening jig, how to make
Planes, see Ice
Planer, made from jointer
auto valve springs, use of
construction drawing
assembly details
alignment checking
Plant Grafting, see Grafting
Plants, potted, tips on care
Plant stand, how to make
square brass tubing, use of
construction drawing
squared pattern
bending details
assembly data
finishing methods
Plant Holder, Aluminum, How to Make, see also Soldering Techniques
- pattern drawing
- wood support, how to make
- materials required
- special solder, use of
- finishing techniques

Plant Growth Tip

Plaster Casting, How to Do
- life masks, how to make
- materials required
- pouring tray, how to make
- model, how to prepare
- cigarette paper, use of
- eyes, protection of
- breathing tubes, how to use
- plaster, how to pour
- setting time, how to gauge
- mold, removal of
- soap, use of
- casting data

Plaster Casting
- clay patterns, use of
- clay patterns, how to make
- modeling board, how to make
- tools required
- plaster of Paris, use of
- finishing details

Plaster Casting
- rubber molds, use of
- original model, how to make
- "waste" mold, how to make
- multiple casts, how to make
- casting box, how to make
- bronze finish, how to simulate

Plaster Patching Tip

Plaster Patching, General Data On, see also Walls
- spackling putty, where to use
- patching plaster, when to use
- undercutting, reasons for
- undercutting, how to do
- wetting, purpose of
- scratch coat
- finish coat
- feather edging, how to do
- sanding, how to do
- tools required
- large patches, handling of
- lath, replacement of
- metal lath, use of
- cornice strips, use of
- trowel or float, how to use
- walls and ceilings, how to replace
- furring methods
- plaster bases
- lath, types of
- corner bead, use of
- grounds, use of
- metal arches, where to use
- plaster, ready mixed, use of
- base coat plaster, formula for
- finish coat, formulas for

Plastic Cementing, How to Do
- cementing chart
- joining jigs, how to make
- cement, how to apply
- solvent, how to use
- poor joints, causes of
- plastic projects, how to make
- coaster set
- cigarette box
- earring rack
- picture frame

Plastic Forming Oven, How to Make
- materials required
- construction drawing
- wiring diagram
- nichrome wire, use of
- clay insulators, how to install
- asbestos, use of
- conduit, how to make
- switch, how to mount
- oven, operation of

Plastic Plant Trellises
- plastic strip bending, how to do
- cemented joints, how to make
- decorative designs, how to form
- spider web design
- cattail design
- scroll form
- birdhouse outline
- hot plate, use of in forming

Plastic Projects
- humidor and pipe rack
- chip and card holder
- detailed drawings
- assembly methods
- candy plate, pattern for
- jewel box
- wood form, use of
- chessmen
- lathe, use of
- carving, how to do
- polishing techniques
- paper patterns, use of
- plastics, how to stain
- cigarette package holder
- plastic fastening tips

Plastic Signs, How to Make
- optical principles
- unusual effects, how to achieve
- bending radius data
- scribed outline letters
- blocked in by cross hatching
- routed to even depth
- painted, gilded, luminous pigments
- transparent overlay
- frosted effects
- engraving
- formed letters
- plastic inlay

Plastic Techniques
- plastic projects, how to make
- picture frame
- night lamp
Plastic
Plumbing
Playhouses, stretching forming
strip
cigarette cylinder sheet
detailed grinding cementing screw drilling, disk sanding, sprung half tie tray
cone steel vise, plastic, machine forming flat peg-forming, plant spindle hardwood, proper hardwood, milling tools heat polishing, compression wet wedge beads F.P.M. plastic inlaid shut-off sill faucet leak finishing fuller leaking leaky radiator hot water flush tanks, replacement of hot water tanks, repairs to flush tanks, water loss from flush tanks, repairs to water temperature, control of
bench vise, how to use on pipe stop and waste cock, testing of pipe size chart pipe leaks, emergency repairs on flush tank ball replacement faucet washer replacement valve seat refacer, how to make obstructions in pipe, removal of drain auger, use of closet auger, use of tank leaks, treatment of new range boiler, how to install
Plumbing System Planning, How to Do, see also Bathroom Planning
basic planning, object of minimum plumbing, how to achieve compactness for economy typical plumbing system, diagram of bathroom layouts shower installations bathroom partitions, data on ventilation, need for detail planning codes, conformation to stack location house drain, position of drainage system adding plumbing
Plumbing Tools and Their Use
force pump
closet auger
drain auger faucet and valve seat dressers pipe wrenches chain wrench locking pliers strap wrench girth wrench girth wrench open end wrench adjustable wrench monkey wrench closet-spud wrench Stillson wrench pipe vises pipe cutters pipe reamers pipe threaders blowtorch plumber’s furnace molten lead, precautions in handling caulking and leading soil pipe joints, how to do
plumber test plugs, how to use sewer cleaning tools
Plywood, Panel Your Home With
use of types two methods of wall paneling
new construction old plaster walls paneling layouts joints ceilings
finishing
ceiling — wall trim
inside corners
door and window trim
finishing
Plywood Bending, How to Do It
Plywood Cutting, How to Do It
Plywood Splicing, How to Do It
Pointing, see Tuck Pointing
Polishing Compounds, see Abrasives
Polishing Head Attachment, How to Make
detailed drawings
pipe fittings, use of
welding, use of
grinder shaft, matching to
Pools, see Swimming
Pools, see Wading
Porcelain Repairs
stick porcelain, how to use
porcelain putty, how to use
porcelain glaze, how to use
complete refinishing, technique
refinishing step chart
Porch Floor Tip
Porch Lamp in Copper, How to Make, see also Yardlight
materials required
detailed drawing
assembly details
wiring, details of
finishing
Porch Lantern, How to Make
materials required
detailed drawings
assembly drawing
finishing data
Porches and Breezeways, How to Build
porch and breezeway planning
floors, flagstone and concrete
foundation supports
wooden porches, general data
floor framing details
slab pouring, general data
raised concrete floor, how to make
wood flooring, how to lay
ceiling and roof, how to frame
roof supports, details of
roofing, general data on
breezeway, how to frame
canopies, how to make
steps, poured concrete, how to make
screens, how to fit
porch, how to enclose
insulation, use of
vapor barrier, need for
interior walls, installation of
Post Hole Auger, Tractor Driven, How to Make
construction drawing
materials required
auto parts, use of
drive shaft, how to mount
draw bar, details of
rate of feed, control of
Poultry Houses You Can Build
floor layouts
framing drawing
materials required
construction details
roofing data
slab foundation, how to make
interior equipment, installation of
water supply, automatic control of
window frame details
slant wall type construction, general
data on
sliding sash, use of
framing details
small type chicken houses, general data
Power Tool Combinations, How to Set Up, see also Workshop Planning
jack shaft, use of
single motor rigs
mounting brackets, how to make
motor belt tension adjustment, general
data on
motor mounting bracket, how to make
typical power tool layout
Power Tools, Refinishing Of, see also Spri
Painting
masking tape, use of
spray gun, use of
lacquer putty, technique of use
wet sanding, how to do
finish coat, how to apply
Power Tool Short Cuts
table saw tips
jointer tips
router tips
lathe methods for better work
power sanding, tips on
duplicating parts, rapid methods
lathe tool speed tricks
roller skate wheels, use of
screen door closer, use on table saw
plane, use on lathe
caliper setting block
typewriter eraser, use as guide wheel
jigsaw tips
paint roller, use of
drill press tips
jigs and fixtures, how to make
bandsaw tips
Power Tool Stands, How to Make, see also Workbenches
jointer stand
bench saw stand
drill press stand
bandsaw stand
jigsaw stand
detailed drawings, all projects
lathe stand
materials lists, all projects
Power Tool Stands, Simplified
tie rods, use in construction
hardwoods, use of
correct pruning, diagrams of
Punches, How to Use, see also Metal, Art, Hand Tools
center punches, use of point, how to set line-up punch prick punch tapered punch pin punch grinding jig, how to make bushing punches, data on riveting punches tubular-rivet-header hollow punches piercing punches sharpening techniques
Puppets, Hand, How to Make and Use materials required head modeling, details of body, how to make costumes, details of puppets, how to operate Push Truck, How to Make, see also Garden Barrow, see also Garden Cart materials required detailed drawings wheels, type of wheels, how to mount truck caster bearing, use of axle, details of steering mechanism, data on

Q
Quartz, see Abrasives
Quilting Frame, How to Make materials required detailed drawing folding mechanism Quoits, Moving Stake Type, How to Make cord and lever system, how to rig moving stake quoits, how to play Quoits Accessory, How to Make detailed drawing squared pattern materials list

R
Rack, see Gun Rack, see Saw Rack Radial Saw Techniques radial saw, operating principle of methods of use, choice of crosscutting, data on ripping, data on right hand feed, details of left hand feed, details of left hand miter, how to make right hand miter, how to make saw installation "wear" table, use of fence, securing of
square, use of
table of common rafters
rafter angle cuts, how to make
routing, how to adapt saw for
grooving, how to adapt saw for
shaping, how to adapt saw for
rabbeting, how to adapt saw for
dado head, use of
precision grinding, how to do
Radiator Covers, How to Make
materials required
types, illustrations of
building instructions
modern styling
fitting to radiator
finishing details
Radio Cabinet, How to Make, see also
Phonograph Cabinet
materials required
detailed construction drawing
assembly drawing
finishing details
speaker, cutting hole for
radio mounting details
Radio-Phono Combination Console, How to Make
materials required
detailed construction drawing
ball bearing swivel, use of
caster guides, use of
record changer base, details of
radio chassis, mounting data on
baffle boards, how to mount
TV mount, details of
balance weighting of cabinet, data on
Radio Receivers, How to Make
materials required
construction diagram
operating instructions
limitations of
battery operated amplifier, how to make
speaker, use of
head phones, use of
circuit diagram
construction drawing
progressive receiver, one-tube, how to make
head phone, use of
circuit diagram
construction drawing
circuit diagram
coil winding data
labeled part photos
test, how to make
set, how to use
progressive receiver, 4-tube, how to make
circuit diagram
materials required
resistors, table of
circuit diagram
T.R.F. Dual-purpose receiver, how to make
construction drawing
circuit diagram
phono jack, use of
A.M. tuner, use as
record player, use with
chassis base, how to build
pictorial wiring diagram
operating details
two way portable super, how to make
rectifier tube, elimination of
winding, how to make
detailed construction drawing
circuit diagram
chassis base, details of
wiring procedure
condenser table
batteries, use of
operating instructions
two-tube "pockette" portable, how to make
parts required
circuit diagram
detailed construction drawing
assembly details
ear phones, use of
operating data
one-tube emergency receiver, how to make
standard materials, use of
circuit diagram
coil, how to wind
cardboard form, how to make
testing, how to do
finishing details
circuit diagram
detailed construction drawing
Radio Servicing, How to Do
trouble shooting, how to proceed in
basic radio and electronic parts
set tests, how to make
test instruments, how to use
flashlight battery, use of in testing
speaker cone, protection of in testing
antenna lead, precautions with
electric hand grinder, use as cleaning tool
fiber rod, use of as connection tester
filter condensers, data on
glow lamp, use of
antenna leads, soldering of
snap switch, use of
record player, use of
antenna length, checking of
selenium rectifiers, precautions with
speaker, grounding of
speaker hum, reduction of
circuit hum, data on
circuit diagram
coils, winding of
shield clips, adjustment of
general repair tips
Radio Testing Units, How to Make and Use
signal tracer, how to make
detailed construction drawing
parts list
circuit diagram
assembly instructions
utility volt-ohm checker, how to make
circuit diagram
milliammeter, use of
photostat of scale, how to use
parts required
assembly instructions

Radio Tuning Units, How to Make
A.M. type, data on
A.M. tuner, how to make
detailed construction drawing
circuit diagram
parts required
assembly details
case, how to make
chassis mounting details
operating instructions
general data

Hi Fi F.M. Tuner Unit, how to make
parts required, kit form
pre-wired unit, use of
audio amplifier, use of
loudspeaker, use of
detailed construction drawing
circuit diagram
assembly details
amplitude modulation diagram
frequency modulation diagram
operating principles of
full wave rectifier, use of
antenna, how to mount
cabinet, recommendations for

Radio Workbench, How to Make
old furniture, use of as basis
miscellaneous materials required
back panel, mounting of
wiring suggestions
testing aids, installation of
finishing details
general data

Railroad, see Model Railroad

Raffia, How to Do
materials required
detailed weaving diagram
winding techniques
design tips
weaving projects
waste basket
purse, how to make
hot dish pads
mats
general data

Rame, see Hydraulic

Re-Caning, How to Do
materials required
cane, sizes of
step-by-step photos
moisture, control of
weaving diagrams, photographic
square sea's, treatment of
round seats, treatment of
loose ends, fastening of
pattern, development of
binding, how to apply
clear varnish or lacquer, use of
shrinking solution, use of

Receivers, see Radio
Recipe File, How to Make
materials required
detailed construction drawing
assembly details

Record Cabinet and Sound System, How to Make, see also Hi-Fi Speaker Cabinet
materials required
detailed construction drawing
assembly details
finishing techniques
installation details
record changer, details of
record changer, installation of
electrical parts, installation of
remote speakers, installation of

Record Cabinets, How to Make
materials list
detailed construction drawings
tools required

squared pattern
highboy cabinet type
lowboy cabinet type
hassock type cabinet
foam rubber, use of
record slots, details of
album compartments, how to make

Record Changer Installation, How to Do It
old radio cabinet, use of
3-speed units, how to mount
turntables, how to mount
old cabinet, modernization of
wiring diagram
mounting board, use of
cabinet compartment details
shock mounting, springs, rubber, etc.
cabinet, simulated bookcase type
materials required
book jackets, use of
plywood, use of
detailed construction drawings

Record Player, How to Make
parts and materials required
circuit diagram
detailed construction drawings
assembly instructions
turntable, installation of
chassis mounting details
operating instructions
tone arm, installation of

Record Player Servicing, How to Do
trouble shooting, details of
pickup arm, data on
pickup cartridge, use of
turntable mechanism, cleaning of
bearings, lubrication of
crystal pickups, tightening of
felt, use of
phono plugs, oxidation of
solder, use of
precautions in repair work
art gum, use of
Recreation Rooms, General Information On
basement space, conversion of
floors, treatment of
walls, treatment of
ceiling, information on
space, division of
piping, how to conceal
heating unit, treatment of
laundry area, modernization of
drains, treatment of
partitions, how to erect
outside walls, treatment of
furring strips, use of
da gration, data on
insulation, use of
doors, how to conceal
windows, treatment of
wiring outlets, addition of
finishing, special paints used in
tile, how to lay
fireplaces, precautions with
ventilation, methods of
Refinishing, see Antiques, Refinishing
Refrigerator Servicing. How to Do
operating principles, refrigerating systems
cooling unit, diagram of
automatic controls, working principles of
cleaning, methods of
wiring, how to check
air circulation, allowances for
V-belt drive, how to check
lubrication, proper procedure
food arrangement in box, reasons for
gasket, replacement of
chipped porcelain, repair of
Relays, How to Make
general principles
materials required
design, variations of
air-gap-ampere graph
parts diagram
detailed construction drawing
magnet core chart
coil diameter chart
contacts, how to make
coil, how to wind
wire size, determination of
insulation, types of
insulation, how to make
relay control circuits, use of
Relays, How to Make
relays, a.c. type, how to make
coil winding details
coil winding form, how to make
detailed construction drawing
wire size and gauge number chart
wiring diagrams
brown paper, use of
safety motor relay, how to make
low voltage motor relay, how to make
laminations, data on
solenoid type relay, detailed drawings
thermal relays, how to make
hot wire type, details of
thermostatic type, data on
delayed action relays, general data on
wiring diagrams
hot wire relays, design chart for
bi-metal relays, wire type chart
transformer, use of
nichrome wire, use of
safety devices, data on
Remodeling, Houses, General Data On, see
also Insulation, see also Rewiring, see also
Bathroom Planning, see also Attic Space
Conversion, see also Storage Space
additions, how to plan for
foundation, requirements of
ready made piers, use of
crawl spaces, treatment of
foundation wall, laying out of
foundations, trenches and forms, how to make
footings, how to cast
concrete, formula for
foundations walls, detailed drawings of
slab floors, how to pour
perimeter insulation, data on
wood float, use of
house wall, uncovering of
sills and sole plates, how to attach
foundation joints, how to seal
termite shields, use of
joists and bridging, details of
floor insulation, data on
vapor barrier, installation of
subfloor, how to lay
wall frames, how to erect
joint at eaves, how to make
side wall, joining to house
sheathing, installation of
windows and doors, allowances for
roof, application of
insulation, wall to ceiling, how to do
exterior finishing, general data on
two story extensions, data on
attached garage, building methods
breezeay, need for
building codes, factors in
fireproofing, data on
Remote Control Switch, see Model Train
Resilver, see Mirror
Retaining Walls, How to Make
erosion, reduction of
flagstone, use of
foundation terraces, data on
grading, data on
drainage precautions
frost precautions
loose flagstone walls, how to build
solid masonry walls, how to build
drain tiles, use of
drainage, proper pitch
forms, how to make concrete, proper formula for

Rewiring, How to Do
codes and ordinances, importance of rewiring, planning for
current loads, how to estimate wiring diagrams
grounding, methods of receptacles, how to mount
current capacity-wire chart
shop circuits, special details of fuse box, location of
branch control centers, arrangement of service entrance, installation of rigid conduit, rewiring of circuits, how to test grounds, how to check for defective circuits, testing for splices, insulation of general data
Rewiring, see Lamp
Ribbon, see Hectograph Ribbon
Ribbon, What to Make With
rainbow stole
ribbon dicky
two color ribbon sash
bow ascot
notched wing ascot
Rifle Hints, see also Gun Cleaning
Rifle Scopes, How to Make
materials required
detailed construction drawings
design, selection of tubing size chart
thread data
bar aluminum, use of optical data
lens spacing layouts
lenses, selection of assembly details
special type scopes, data on
special type scopes, construction drawings
Rink, see Ice Skating
Ripping Fence, see Bandsaw
Riveting, see Aluminum
Roaster, Cabinet For, How to Make
materials required
detailed construction drawing
operating details
assembly data
Rods, see Bamboo
Roof Framing, General Data, see also Dormers

safety precautions
roof pitch, determination of framing, details of collar beams, use of roof framework, how to assemble truss roof, data on hip roof framing, details of roof pitch, how to match cornice construction cornice, box type

roof sheathing, application of edge board, how to use shingle, data on installation of sheathing, types of ladder safety device for roof area, measurement of roofing materials
flat roof garages, tips on asphalt shingles, types of shingle coverage, figuring of shingle forms, types of shingle nails, sizes of old roofs, fastening of roll roofing, use of roof cement, application of ridge, treatment of drip edge, installation of 3-tab square butt shingles, data on two-course match, data on three-course match, data on roof edges, treatment of valleys, treatment of shingles, how to lay flashing, data on flashing, chimney, data on minimum pitch chart roll roofing, how to lay mineral surfaced type, data on wool roofing weight-coverage chart pattern edge roofing, use of wide selvedge roofing concealed nailing methods hips and ridges, treatment of Roofing Repair, How to Do
roof cement, use of broken tiles, replacement of linoleum, use of metal roof, repairs to Rottenstone, see Abrasives
Routing with the Drill Press, How to Do
jigs, how to make spindle speeds, how to select general data special techniques Rowboat, How to Build
sectional design, data on construction drawings materials required assembly data oar locks, how to mount seats, installation of seats, removable, how to make bulkheads, details of locker, installation of Rowboat Caulking, How to Do
tracing wheel, use of Rowboat, Car Top, How to Make materials required
detailed construction drawings mold frames, how to make mold frames, how to use keel, how to assemble transom, how to make
paper mold patterns, how to use
assembly drawings
planking, how to apply
plywood, waterproof, use of
bottom panel, how to cut and apply
finishing, details of
Rowing Unit for Canoe, How to Make
detailed construction drawings
outrigger type oak locks, how to make
materials required
assembly instructions
oar lengths suited to
installation details

Rug Weaving, How to Do
hooking frame, how to make
detailed drawing
hooking technique
rug hook, how to make
patterns, choice of
fluff rugs, how to make
winding method
carpet warp, use of
woven rugs, how to make
loom, how to make
detailed plans
weaving methods
squared drawing
patterns, transferring

Rust Removal, How to Do It, see also Stain
Removal, see also Cleaners and Finishers
stannous chloride, how to use
soda soap bath, use of
alcohol, use of
chalk and oil paint, polishing with
cork, oil soaked, use of
flowers of sulphur, tripoli and olive oil
paste
emery dust, use of
muriatic acid, use of
precautions

Rustproofing
calcium chloride, use of
rustproofing metal fixtures
rust preventive for tools
paraffin, use of

S

Safe Driving, How to Do It
braking distance, data on
road signs, how to spot
skidding, how to control
speed, dangers of

Sail Mending, How to Do It
leather palm, how to use
straight line tear, how to patch
L-shaped rip, how to patch
herringbone stitch, how to make
grommets, how to replace
general information

Sailing Scow, How to Make
materials required
detailed construction drawings
side panel assembly detail
framings details
side panels, layout of
deck panels, layout of
centerboard well details
rudder, data on
rigging plan
rigging tangs, how to fasten
gooseneck details
mast and sail details
assembly data
finishing

Sanding, How to Make
concrete, use of
form, how to build
cement formula
pouring methods
Sanding Box, How to Build
detailed construction drawing
materials required
assembly details
rain cover, use of

Sander Block, How to Make
materials required
construction drawing
hardwood wedges, use of
felt, use of

Sanders, How to Make and Use
lathe sander, how to make
materials required
construction drawing
shaft bushing, details of
drums, how to make
sanding belt, how to mount
tension, provisions for
aligning bar, installation of
fence, how to make
stick belt dressing, use of

Sanders, Power, How to Make
combination model, band, disk, and drum
type
band sander, details of
drum sander, details of
disk sander, details of
belt sander, how to build
detailed drawing
materials required
assembly details
holding small work on sander, details of
wheels, wood, making on sander

Sander, Disk, 12-inch, How to Make
detailed construction drawing
materials required
motor sizes suggested
tilting table, details of
table adjustment detail
dust catcher, details of

Sander, Disk, From Lathe Headstock
materials required
detailed construction drawing
assembly details

Sander, Double Duty, How to Make
drum and disk combination, details of
bed, hinging detail of
drum, how to make
detailed drawing
sanding bed, construction of
disk, how to make
disk, how to mount
table and base, details of
table, tilting arrangement
trunnions, details of
Sanders, Lathe, How to Make
materials required
construction drawings
assembly details
Sander, Spindle Type, From Dowel
Sander, Cord, Holding Hint
Sanding Belts, How to Make
patterns made from old belt
abrasive, roll form, use of
detailed drawings
fastening methods
Sanding Tips
hand sanding blocks, how to make
hand sanders, special types
grits, grading of, chart
grits, characteristics of
shellac, use of
sanding techniques
general data
Sandpaper, see Abrasives
Sash, see Storm Sash
Saw, see Circular Saw
Saw Filing, How to Do, see also Filing
jointing
setting
tools required
crosscut saw, filing of
rip saw, filing of
filing vise, use of
oil stone, use of
Saw Rack, How to Make
materials required
construction drawing
mounting details
Saw, see Scroll, see Hole, see Cut Off, see
Swing
Saw Techniques
general data
cross cut saw, tooth shape of
cross cut sawing, angle of
rip saw teeth, shape of
rip sawing, angle of
marking for cut, data on
work, how to hold
sawing position
proper grip
cut, how to start
general techniques
back saw, data on
dovetail saw, how to use
depth of cut, how to limit
large panels, how to saw
special saws, use of
curves, how to cut
internal cuts, how to make
saw care, tips on
Saw, Buck, How to Make
materials required
construction drawing
Sawdust, How to Remove, see also Workshop
Planning
beneficial qualities
excessive sawdust, elimination of
disposal systems, data on
Sawhorses, General Information On
work holder, how to make
logs, how to hold
drawn planing holder, how to make
sawhorse, demountable, how to make
detailed construction drawing
materials required
assembly details
sawhorse, portable, how to make
self-contained carrying case, how to make
construction drawing
assembly method
Scooter, see Ice, see Motor, see Snow
Scopes, see Rifle
Scow, see Sailing
Screen Problems, Solving
construction details
folding mesh
fitting molding
screen hooks secured
plastic screening
patching plastic
patching wire
patching roller screen
screen hooks
Screens, see Fireplace, see Folding, see Storm
Sash, Screen
Screwdriver Techniques
correct screwdriver, how to select
types of driver tips
screw recess-driver tip chart
types of screwdrivers
ratchet details
offset design, use of
tip maintenance
Screw Driving, Correct Methods Of
drill grain, methods for
flat grain, methods for
pilot holes, data on
counterboring, data on
countersinking, how to do
depth of hole, how to govern
Scroll Saw, Heavy Duty, How to Make
materials required
sewing machine head, use of
construction drawing
assembly details
table details
pipe fittings, use of
control switch, mounting of
Scroll Saw Techniques
pattern layout, use of
carbon paper, use of
cutting methods
blades, selection of rippling, methods of router, use of with scroll saw veneer inlays, how to make scroll saws, portable, use of general data

Scrollwork, How to Do It scrap material, use of squared patterns, use of novelty projects

Secretary Desk, How to Make materials required power tools, use of door grilles, details construction details

Seeder, Broadcast Type, How to Make tractor, used with materials needed detail drawing seeder, capacity of seeder, operation methods seeder, how to clean

Seed Duster, How to Make construction drawing assembly drawing baffles, data on chute construction operation instructions precautions

Seeds, see Germination

Seesaw, Merry-Go-Round Combination, How to Make, see also Merry-Go-Round scrap materials, use of construction drawings bearing, details of hub, detailed drawing of lubrication

Serving Carts, see also Snack Tray, see also Tea Cart modern tea-wagon materials list construction drawing electrical outlets, installation sliding top, details of tray recess, how to make glass racks, installation of truck casters, how to mount chuck wagon model serving cart construction drawing framing details squared pattern, use of trays, details of wheels, how to make wheel assembly, details finishing tips

Serving Boards, How to Make hardwood, use of lathe, use of sanding, need for finishes

Serving Trays, How to Make, see also Snack Server, see also Tea Cart folding leg design materials list detailed drawing dish compartments, how to make tray ends, details finishes revolving tray, how to make plywood, use of sheet copper, use of squared pattern turning mechanism copper, hammering copper, finishing assembly details triple-deck tray, how to make china plates, use of china, how to drill brass tubing, use of assembly methods detail drawing freestanding tray, how to make materials required squared pattern solder, tips on use of detail drawings assembly methods plastic trays, how to make heat-forming plastic, how to use half-patterns, use of plastic, sawing techniques joints, how to make polishing methods

Sewage-Disposal System for Farm and Homes, Data, see also Drainage Systems septic-tank, operation principles drainage systems, diagrams of typical house disposal system tank, excavation for drain-tile trenches, correct grade of grade, how to gauge tank, how to make concrete, correct pouring method cast-iron pipe, how to join open-end tile, how to lay gravel, use of tar-paper, use of sump pit, where used grease trap, how to make removable lids for tank and grease trap, how to make

Sewing Kit, How to Make materials required construction drawing assembly details

Sewing Machine Console, How to Make materials required construction drawings trim, use of machine compartment spool drawer, details chair, stored in cabinet, how to make molding, how to match finishing details

Sewing Machine Conversion, How to Make
conversion kits, use of
machine-head, removal of
mounting board, how to make
cabinet base, details
motor unit, installation
carrying case, how to make
Shades, see Window
Shaft, see Flexible
Shaper Attachment for Lathe, How to Make
materials required
construction drawing
assembly methods
alignment, testing for
Shaper, How to Make
materials required
ball-bearing unit
construction drawing
assembly details, drawing
fence, how to make
belt or pulley, installation
Shaper, Tips On
ball-bearing, used as depth-collar
Shaper Jig for End Cuts, How to Make
materials required
construction drawing
miter gauge, detail
assembly data
operation data
Sharpening, see Jointer, see Small Tool
Sharpening, see Lawn Mower
Sheet Metal Cutting, Channels for Guiding Cuts
wooden channels, how to make
cotter pin, use of
Sheet Metal Cutting, General Information, see also Friction Sawing
basic tools
snips, types of
snips, how to use
litter, how to operate
portable shear, how to operate
tool data chart
ring shear, operation of
ring shear, capacity
pivot, use of
portable nibbler, pattern-cutting with
nibbler, mounts for
hand-operated punch, sizes of
repeating pattern, methods
hand-punch accessories
bandsaw, use in metal-cutting
galvanized stock, friction-sawing of
jigsaw, how to use
hole-saws, uses of
Sheet Metal Forms, see Flagstone
Shelf-Light, How to Make, see also Bookcase
materials required
detail drawing
wiring diagram
fluorescent tube, installation
reflector, details
finishing
Shelves, How to Make
materials needed
construction drawing
squared patterns, use of
assembly methods
finish applied
Shock Absorbers, see Car Kept Easy Riding
Shop Lights, How to Make
lights, directional
special bulbs, use of
spotlight, photographic use of
gooseneck adjustment, details
materials required
construction drawing
mounting fork, details
lathe, use of
counterweight, casting of
hand-wheel, detail drawing
wiring plan
Shop, see Woodworking, see Workshop
Shuffle-Board Court, How to Build
site, selection of
 Cinder fill, need for
concrete, two layers, conditions for
concrete, proper mix
floating method
trowel, use of
playing lines, how to paint
Signs, see Plastic, see Safe Driving
Silicon Carbide, see Abrasives
Silk Stencils, How to Make
greeting cards
cutouts
novelties
setup, preparation
frame, how to make
stencils, knife-cut
stencils, blackout
tracing paper, use of
 wax paper, use of
squeegee, how to use
spray-painting, use of
stencil silk, grades of
photographic methods
multi-color printing, data on
sample designs, use of
Skates, see Ice, see also Bob-Sled
Sleds, "Mono-Rail" Design For
steering mechanism, details
high speed maneuverability
steering-gear, lock for
sled, weight-for-strength
Slides, see Children's Slides
Small Parts, Storage Tips
bins from varnish cans
wooden bin rack, how to make
folding dispenser, how to make
materials required
blueprint
glass jars, use of
hardboard, reinforcing with
assembly details
wooden bins, how to make
storage cabinet, how to make
cabinet, swing-away mounting, details mailing tube dispenser, how to make wooden plugs, lathe turned wooden baffles, how to fit dispenser, how to mount single-post storage rack, how to make muffin pans, use of post, assembly details pans, mounting details sectional rack, how to make trays, how to make post, solid rod, use of wooden spools, use as spacers pipe flange, mounting unit pistons, use as bins wooden mount, how to make storage jars, rack for sardine cans, how to use cans, cutting data assembly, details Small Tool Sharpening, General Data On stone, hand-held hand stones, types of grindstone, foot-driven grindstone, electric face-of-wheel grinding side-of-wheel grinding bevels, selection of leather edging, how to avoid magnifying glass, use of drawing tool temper, prevention of honing, methods leather-faced honing wheel, how to make honing wheel, how to use Simple Gauge for Drill Press Grinding, How to Make materials required detail drawing assembly method gauge, how to use Smoking Stands, How to Make tee-base stand, how to make materials list construction drawing squared pattern legs, cutting detail post, derail assembly drum-type design, how to make detail drawings patterns, use of glue, how to use pedestal, how to turn drawer, details crow's nest design, how to make detail drawing assembly methods finishing details end table design materials required construction drawings drawer detail pedestal, how to turn finishing methods Smokestack Sleeve, Utilization sheet metal, use of ducts, installation fan, used as circulator Snack Bar, How to Build standard bookcase, use of pine paneling, installation bar-top, treatment of finishing Snack Server, How to Make, see also Serving Trays, see also Tea Cart materials required detail drawing squared pattern wood hinges, how to make assembly data finishing technique Snapshot Frame, How to Make wall protectors, plastic, use of prints, how to mount support, how to make Snips and Their Use, see also Metal, Art, Hand Tools For common types duck-bill compound lever heavy-duty combination special types curved-blade snips hawk-bill double-cut shears bench shears snips, general technique cuts, diagrams of snips, how to care for sharpening, data on Snow Scooter, How to Make materials required construction drawing steering post, detail welding, use of assembly data scooter, how to ride Soldering Techniques soldering iron, how to clean in tinning blowtorch, how to use flux, application iron, proper heat of, test sweat-soldering method melting point of soldering alloys, table small joints, tips on rust-proofing tubes, repair of soldering fluxes for various metals, table soldering, general information on wire solder, tips on soldering iron, safe holder for excess heat, dispersion of soldering iron, cleaning tips Solvents, see Vapor
Spark Plugs, General Data On, see also Car Electrical System, see also Motor Tune-up
wear, causes of
basic parts of, sectional drawing
plug failure, causes of
insulators, cracked, dirty
carbon deposits
insulator, erosion of
running too hot
shell threads, how to clean
electrode points, how to clean
plug gauge, use of
new gasket, installation
plug removal, method and tools
gasket seat, how to clean
shorts, prevention of
ignition wire, reattachment of
Speaker, see Hi Fi-Speaker Housing
Spinning, see Metal
Spot Welder, How to Make, see also Welding
materials required
detail drawing
handle, pattern for
silicon-steel core, detail
insulating compound, use of
wiring diagram
assembly details
welder, operation of
Spot Welding Technique
joints, types of
welding, principles of
work, preparation of
galvanized metal, treatment of
center punch, use of
iron and steel, methods
tin plate, methods
stainless steel, advantages in welding of
spot-welding, applications
Spray Aids, see also Spray Painting
lacquer, tips on
heating, precautions
right-angle fitting, how to make
air-filter clogging, prevention of
nonbleeder-type, how to use with small
compressor
small jobs, tips on
Spray Attachment for Tractor, How to Build
materials required
construction drawing
mounting brackets, how to make
centrifugal pump, use of
tractor drive, use of
Spray Gun, Alterations to
suction tube, auxiliary
modelmaking, use in
Spray Rig, Portable, How to Make
materials needed
diagram
Spray Painting Techniques, see also Wood Finishing
spray guns, types of
suction feed, diagram
pressure feed, diagram
terminology, illustrated
compressors, data on
air volume and pressure
portable sprayer hook-ups, illustrations
accessory equipment
sprayer, how to clean
direct electric outfit, data on
duster gun, cleaning with
correct spraying range, details
correct angle, illustration
stroke, how to start
fluid tube, adjustments to
corners, treatment of
finish room for shop, how to make
accessories for
spray patterns, chart
masking tape, use of
work supports, types
outdoor work, precautions
lacquer, synthetics, comparison of
masks and stencils, data on
Sprayers, Utility, How to Build
electrically-driven unit, data
materials required
construction drawings
assembly details
capacities
pump-type field sprayer, how to make
materials needed
construction diagrams
tank capacity
row-crop work, adaptation to
nozzle-boom, how to make
Spraying Walls and Woodwork
preparation
gun and materials required
ceiling, method
walls, techniques
woodwork, treatment
spraying recommendations, chart
Spreader, see Fertilizers
Springs, see Car
Staining, General Data, see also Wood Finishing
types of stain
water stain, characteristics
pigment oil stain, properties, use of
soluble oil stain, data on
non-grain-raising stain, advantages of
shading stain, spray gun application
pigmented stain, how to use
blonding, method
special finishes, chart
N G R stains, how to apply
double staining, methods
sap staining, methods
picture schedule, staining procedure
Stain Removal, see also Cleaners and
Finishers, see also Rust Removal
china articles, treatment of
lemon rind, use of
specific stains, treatment of
acids
alkalis
bolls
blues
chewing gum
chocolate
coffee
dyes and running colors
egg
fly paper
fruits and berries
glue
grass stain
grease and oils
ice cream
indelible pencil
inks
iodine
iron rust
graves
medicines
mildew
dairy products
oil paints
paraffin, wax
perspiration
scorch
shoe dressings
soot
sugar
tars, etc.
water spots
vegetable

cleaning fluids, tips on, general
Stair Building and Repair
concrete stairway, how to make
forms, how to build
concrete pouring, special treatment for stairs
reinforcing bars, where to use
basement stairs, methods
cubic volume of steps, how to figure, chart
concrete, formula for
exterior stairs, relation to architecture
interior stairs, how to build
basic features, diagram
remodeling, tips on
winding steps, layout for
landings, detail
stringers, how to cut
treads and risers, installation of
closed string stair, data on
stair rail, how to make
flight units of rails, joining
newel posts, data on
easements, diagrams
stairways, wood curing
stairways, finishing
Stamp Box, How to Make
rare woods, use of pattern
construction drawing
jigsaw, use of
assembly, method
finish, tips on
Stand, see Telephone, see Smoking
Starter, see Car Starter
Stencil, see Silk
Stepladder, How to Make
materials required
construction drawing
doweled joints, detail
fastenings, detail
Stepladder Stepsavers, see also Ladder Aid:
tool rack, how to make
drawer, pivot type, how to make
ladder legs, shoes for
Stool, see Vanity
Stools, How to Make
adjustable back model, how to make
materials suitable
construction drawing
joints, details of
back attachment, detail
adjustability, regulation of
workbench stool, how to make
bicycle frame, use of
mounting details
Storage Space, see also Attic Space Conversion
see also Kitchen Planning, see also Wardrobes
locations for
wall wardrobes
underbed cabinets
window seats
minimum width, closets
compartments, arrangements for extension rods, use of
materials for building units
construction drawings
portable cabinets
doors, details
storage walls as room dividers
walk-in closets, conversion of
waste space, utilization of
toy drawer, how to make
mobile drawer, how to make
storage rack for storm sash, screens
Storage, see Vegetable
Storm Sash and Screens, How to Make
materials required
typical joints used
hardware types
weatherstripping, use of
frame sizes
divided storm sash, how to hang
casement sash

Glazing, screening, methods
Stroller, How to Make
materials needed
construction diagram
assembly method
Stucco, Repairs To
patching compound, form
cracks, treatment of
compound, application
finishing
Susan, see Lazy
Swimming Pools, How to Build
pools, types of
wading pool, how to make
forms, types of
forms, how to build
adult pool, construction of
pool without plumbing, how to build
pool with plumbing, how to build
drains, installation of
vacuum-cleaning, provisions for
concrete, proper mix
finishing tips
Swing Saw, How to Build, see also Cut-off Saw
materials required
construction drawing
detail drawings
construction details
assembly
mounting, detail
Switch Box, see Darkroom Switch Box
Switches, see Time Switches

T
Table, Card, see Card Table
Table Lamps, How to Make
laminated bases, how to make
wood and plastic, combination of
odd shapes, assembly details
plastics, bonding material for
electrical fixture pipe, use of
indirect lighting, old lamps converted to
wood turning, use in lamp bases
turnings, diagrams for
lamp-smoking stand combination, how to
make
trays, how to make
assembly details
bottle gourd, how to utilize
pattern, how to use
metal lamps, how to make
planter model, copper, how to make
parts required
sheet copper, how to work
base, how to make
reflector, polishing of
tubular bulb, use of
aluminum reflector type lamp
S form, how to form
electric socket, how to mount
wiring details
rocket desk lamp, how to make
pattern for
assembly details
Table, see Card Table, see Dining Room
Furniture, see Magazine Table
Table Legs, How to Make
design variations
straight tapers, how to cut
 tapering jig, how to make
jig, how to use
taper with spade foot, cutting method
tapering, use of patterns
Table-Shelf, How to Make
materials required
pattern, squared, use of
scrollsaw, use of
assembly, data on
finishing
Table Tops, How to Make
auxiliary tops for small tables
materials required
construction drawings
legs, detail
folding mechanism, detail
storage facilities
Table Top, see Billiard Tables, How to Make
drop-leaf model, how to make
materials required
patterns, legs
construction details
tools required
assembly data
finishing
gate-leg design, how to make
materials recommended
detail drawings
assembly procedure
finishing
hutch table, early American, how to make
materials required
detail drawings
storage compartment, detail of
assembly data
finishing data
boomerang table, how to make
materials required
pull-apart drawing
construction details
cottage table, how to make
X type legs, detail
materials required
construction drawing
dowels, use of
finishing, details
Tags, see Paperboard
Tailstock, see Drilling from Tailstock
Tank, see Developing Tank
Tape Tips
windows, weather-proofing
crayon, reinforcing of
shelf paper, fastening tip
rulers, preservation of
hand drill, depth gauge for
screws, starting of
loose caps, securing of
screws, identification of
curtains, snatch prevention
buttons, separator for
rust rings, how to stop
clamps, use as
clothes, protection of
dishes, identification of
decals, removal of
envelopes, renewal of
screen holes, how to seal
lint, removal of
lamp-cord, insulation
old glue, removal of
shoelaces, retipping, how to
pen, repairs to
wristwatch, holder for
Tapping, see Brass Tapping
Tapping Jig for Drill-Press
materials required
detailed construction drawing
operation, method
Tapping Thin Metal
drill, use of
tapered punch, use of
pipe size, hole size, chart
Taps, see Wood
Taps and Dies, see Threading
Target for Rifle Practice
materials required
construction drawing
sectional view
sound, use of
safety precautions
Target, see Archery
Teacart, How to Make
materials needed
construction diagrams
Telephone, Intercom System, How to Make
materials required
construction drawing
wiring diagram
Telephone Shelves, How to Make
materials used
detail drawings
directory shelf, detail
mounting details
Telephone Stands, How to Make
materials required
construction drawings
assembly methods
finishing details
between-rooms shelf, how to make
opening between studs, how to cut
trim, application of
closure, provision for
Telephone Stand and Stool
list of materials
construction details
Telescope Design and Construction
kinds of telescopes
Galilean telescope, characteristics of
optical bench
tubing, cardboard, use of
astronomical telescope, data on
exit pupil, definition of term
experiments, focusing, etc.
eyepieces, types of
image stop, data on
typical astronomical telescope, how to make
materials used
assembly details
detail drawings
scope, how to design
layout, how to make
image, size of
light rays, tracing of
erectors, data on
lens image, detail
second image, ground glass used for
mechanical construction
magnification, check for
field, visual check for
apparent field, data on
luminosity, calculation for
specific designs
prismatic telescope, how to make
prisms, characteristics of
23X prismatic spotting scope, specifications
prismatic scope, how to design
bench setup
monocular construction, details
general information
lens charts, etc.
Telescope Mount, How to Make
materials required
detailed drawings
construction drawing
assembly method
mounts, types of
Telescope Tripod, see also Tripod
hardwood, use of
jigsaw, use of
construction drawing
assembly, detail
adjustments, how to make
Television, Picture Defects and Corrections
Using Test Patterns
normal picture
too much contrast
too little contrast
picture tilts or moves sideways
picture moves up and down
picture too wide
picture too tall
interference due to hum pickup in set
interference from diathermy apparatus
blurred picture
picture elongated vertically
picture elongated horizontally
correct picture
too bright
horizontal movement
vertical movement
multiple images
ignition interference
too much contrast
out of focus
adjust width
adjust height
R.F. interference
diathermy interference
Television Repairs, Simple
circuit layout
oscillator
secondary
secondary
contrast
volume
primary
removing
focus
focus
vertical
brightness
fine-tuning
tuner
scalloped
cores
height
vertical
horizontal
width
horizontal
width
horizontal
width
distorted
picture
narrow
how
television-circuit
horizontal
sound
picture
vertical
picture
wrinkled
horizontal
how
picture
no
top
picture
picture
picture
hum,
weak
poor
picture
uneven
weak
picture,
picture
dark
and
white
lines
through
picture
negative
picture
ghosts
in
picture
top
or
bottom
of
picture
blacked
out
picture
fades
in
and
out
black
bar
of
varying
width
across
center
of
picture
brown
or
purple
bar
of
varying
width
across
center
of
picture
intermittent
performance
of
either
sound
or
picture
receiver
noisy
when
jarred
or
subjected
to
vibration
noisy
volume
control
interference
arching
in
the
receiver

Tennis
Table,
How
to
Build
materials
required
framing
details
top,
how
to
mount

Tenon
Cutting
Jig,
How
to
Make
circular
saw,
use
of
materials
needed
assembly
drawing
cutting
tips

Tents,
How
to
Make
materials
required
waterproofing,
use
of
cutting
instructions
seams,
how
sewn
tent,
how
to
set
up
pegless
tent
for
children,
how
to
make
safety
features

Tent-Cottage,
How
to
Make
permanent
wood
floor,
construction
of
wood
framing,
details
door,
detail
canvas,
installation

Terrazzo,
How
to
Make
forms,
use
of
rust-proof
metals,
use
of
in
design
color
separation,
how
to
pouring,
methods,
layers,
etc.
marble
chip,
compacting
of
curing,
special
method
grinding,
method
polishing,
details

Testing
Leaking
Radiator
water
pressure,
use
of

Testing
Unit,
see
Electrical,
see
Radio

Textile
Colors,
see
also
Dyeing
fabrics,
suitability
of
fabric,
treatment
of
stencils,
how
to
make
stencils,
how
to
use
color,
application
of
multiple-color
designs,
method
color,
how
to
set

Thread
Cutting
on
the
Lathe
spindle
speed,
data
speed
setup,
gear-train
gear-train
setup,
regulation
V
thread
American
national
thread
acute
screw
thread
threads, chart
threading tools, illustration
cutting tools, grinding of
internal threads, how to cut
lubrication
bores, how to thread
Threading with Taps and Dies, see also Wood Taps

Wood Taps
drill press setup
thread diameter and pitch, determination of
threads and tap drill sizes, table
drill sizes, table
straight and taper pipe threads, table
tables, how to use, examples

Tiling Walls and Floors, see also Linoleum

tile, characteristic of
amount required, how to estimate
tools needed
room preparation
surfaces, preparation of
mastic, application of
starting point, work procedure
pointing, technique
panel board, predecorated
wainscot, method
bracing, temporary
corner moldings, types of
moldings, installation methods
flexible wall coverings, dry-wall application
joints, types of
corners, treatment of
plastic wall panels, vertical hanging of
plastic corners, special methods
floors, types of coverings
asphalt tile, use over concrete
cement floors, moisture test for
patterns, how to plot
laying method, patterns
border tile, details
tile, care and repair of
tile, cleaning tips

Tilt-Top, see tripod

Time Switches, Electric Alarm Clock
Conversion, see also Electric Alarms
switches, types of
relays, how to make
clock, modification of
parts, mounting of
wiring diagrams

Tin Can Drill Holder, How to Make
can, how to cut
can, mounting for

Tin Can Projects
tinplate, characteristics of
scrubbing, tips on for tin
ball-peen hammer, use of
rivets, how to make
wall scone, how to make
forming jig, use of
assembly drawing
flower vase, how to make
pattern
pipe, used as form

trim, riveting detail
cigarette box, how to make
construction diagrams
forming, tips on
cellophane lining, how to make
coffee warmer, how to make
squared patterns for parts
parts, how assembled
napkin rings, how to make
desk set, how to make
squared patterns
assembly details
sugar trough, how to make
cardboard template, how to use
small hinge pin, used as hammer
candy basket, how to make
friction lid, use as base
wire, formed on jig
weaving, detail
grocer's scoop, how to make
scoop, pattern for
handle, pattern for
turning, detail
wastebasket, how to make
scalloped trim, detail
picture frame, how to make
casal-type leg, detail

Tire Care, General Tips On, see also Car Wheels
tire wear, speed chart
pinching, causes of
incorrect inflation, results of
inflation illustration, chart
wheel balance, relation of to tire wear
misaligned wheels, results of
brake adjustment, importance of
tires, how to remove

Tongs, see Hoisting Tongs

Tool Bit Grinding, see also Abrasives
jig, how to make
construction drawing
assembly detail

Tool Panels, see Workshop Furniture

Tool Cabinets, How to Make
materials required
compartments, how to make
construction drawings
drawer fronts, detail
additional tool storage, plans for
sliding tool racks, how to make
racks, installation of

Tool Kit, How to Make
materials required
dimensioned drawings
assembly data

Tool Rack, see Garden

Tools, see Carbide Tools

Tools, see Hand Tools

Torches, see Benzine Torches, see Electric Torch, see Blow Torch, see Arc Welding Torch

Towel Drier and Utility Shelf, How to Make, see also Kitchen Planning
location for
materials needed
detail drawing
sliding mechanism, details of
assembly, data

Towel Rack, How to Make
retractable design
construction drawing
operation, method

Toy Motors, How to Make
tin and nail motor, how to make
wiring diagram
rotor, detail
electromagnets, use of
dry cells, transformer, choice of
synchronous motor, how to make
principle of
materials required
wiring diagram
assembly, details
series motor, how to make
materials required
construction details
wiring diagram
mercury-pool motor, how to make
principle of
construction details
construction drawings
induction motor, how to make
parts list
dimensions
winding details
rheostat, adjustment

Tractor Maintenance, see also Motor Tune-up
safety rules, chart
maintenance schedule
excessive fuel consumption, causes of
carburetor, adjustment of
air cleaner, servicing of
valves, grinding methods for
valve clearances, check for
oil-filter-cartridge, care of
engine breather cap, cleaning of
magneto, lubrication of
breaker points, adjustment of
re-timing, method
generator, charging rate of
clutch-pedal clearance, how to check
storage tips
derive-bar, advantages of

Trailer, see Boat, see House

Transformer Construction, see also Model
Railroads
types, shell and core, principles of
transformers, how to design
transformers, construction details
shell-type transformers, table #1 50 to 133
cycles
shell-type transformers, table #2 25 to 40
cycles
core-type transformers, table #3 50 to 133
cycles
core-type transformers, table #4 25 to 40
cycles

primary coil wire size chart, table #35
wire sizes corresponding to circular-mil
area, table #6
dimensions for shell type of transformer
steel, table #7
dimensions for core type transformer steel,
table #8
insulation, details
stacking, method
winding, how to make
welding transformers, special windings for
Trapeze-swing, How to Make, see also

Outdoor Gym
chains, use of
harness snaps, how to use
swing seat attachment, details
trapeze bar, attachment details
Trays, see Snack
Tray Developing Tip
roller, use of
Tree Bracing
guying
inter-tree cabling
rodding
eye-splice, how to make
lip and cross-bolting, use of
wounds, treatment of

Tree Felling
advantages of
lean, determination of
tools required
large limbs, individual cutting of
rope cradle, how to use
clove hitch, use of
cutting diagram
lawns, protection of
stump removal
Trellises, How to Make, see also Latticework
materials, varieties of
assembly systems
portable trellis, how to make
trellises for indoor use, how to make
small-scale materials for
designs, range of

Trimmer, see Hedge Trimmer

Tripod Head, Pan-tilt Type, How to Make
materials required
detail construction drawing
machining, detail
assembly details
finishing details

Tripod Projector Base, How to Build
materials, choice of
construction detail

Tripoli, see Abrasives

Trusses, How to Make, see also Roof Framing
adjustable truss, details
truss rod, use of
time-saving roof truss, details

Tubing, see Aluminum Tubing
Tuck Pointing
chimneys, treatment of
tucking, steps in
mortar mix
joint finishes, types

Tuning, see Radio
TV, see Antennas, TV

Typewriter Hideaway Cabinet, How to Build
materials required
classification drawing
door detail, design
assembly, techniques
finish, application of

Typewriter Sound Control
spare rubber, use of
acoustical tile, how to use
plywood, use of

U

Upholstering, Modern Methods
plastic webbing, use of
plastic webbing, advantages of
weaving, technique
wood frames, method
tubular metal frames, treatment
foam rubber, how to use
sagless springs, characteristics of
springs, how to estimate
sagless-springs, gauges and sizes of, table
springs, cutting of
springs, bending of
springs, installation technique
seat springs, treatment
helical springs, use of
upholstery allowance, chart
foam rubber, characteristics
foam rubber, cementing methods
tacking tape, application
fabric covering, standard application

Used Cars, How to Buy
frame, check points
wheel, alignment
shock absorbers, how to test
tires, life of
doors, mechanism, test for
windows, seal of
instruments, accuracy of
accessories, condition of
oil pressure, rate of
brakes, test of
steering system, test of
lighting system
battery, condition of
exhaust system, checks for
motor oil, tips on
transmission, test of
clutch, checks of
body condition
general appearance

Utility Tables, How to Make
materials required
construction drawings
tables, uses for
assembly details
finishing, data on

V

Vacuum Cleaner, Check-up and Repair
cross sectional drawing
bag, emptying of
plug, repair to
brush, how to clean
bristles, check on
motor brushes, renewal of
commutator, cleaning of
open circuit, test for
fan blades, repairs to
circuit tester, use of
electrical details, diagrams of

Valance, Window, How to Make
materials required
construction drawing
assembly method
finishing details

Valance, see Cornices
Valves, see Faucets

Vanity-End Table Combination, How to Make
materials required
construction drawing
assembly technique
finishing details

Vanity Stool, How to Make
materials required
construction diagram
assembly details
finishing details

Vapor Solvents, How to Use
small parts, treatment of
sealed container, use of

Vapor-Zone Grinding
attachment, how to make
system, diagram of
materials required
parts, diagram
construction, details
attachment, operation technique

Varnish, Tips On, see also Wood Finishing
sandpaper, scuffing of
hardness, test for
speck, removal of
temperature, test for

Vases, How to Make
lathe, use of
construction drawings
assembly details

Vegetable Storage, General Data On
warm vegetables, chart of
cool vegetables, chart of
humidity, control of
temperature, control of
outdoor mound, use of
ventilation, provision for
sweating, dangers of
mound, correct construction of
barrels, use of
safety factors

Vegetable Storage Room
Veneering, General Information and Techniques
veneer-press frames, construction of materials, types suitable clamping, methods veneer construction lumber core, how to make glue, data on veneer, flattening of panels, assembly of matching, techniques diamond pattern, how to make edges, treatment of inlays, how to make borders, techniques shaping methods laminating built-up groundwork, methods curved panel, how to make corners, treatment of solid cauls, methods hammer veneering, methods
Venetian Blinds, Refinishing Tips
parts, identification of painting rack, how to make drying rack, how to make
Viewer, see Film Viewer
Vises, Tips On, see also Clamps
auxiliary jaws how to make C-clamps, used as vise special vise mount, how to make chain attachment, use of

Wading Pool, How to Make, see also
Swimming Pools
materials required construction drawing accessories, how to make canvas bench, how to make portable shower, how to make spray nozzle, how to install pipe clamps, how to attach garden hose, use of shower support, how to make
Walks, see Flagstone
Wall Coverings, General Information
sheetrock, fireproof predecorated finishes sizes of application, methods gypsum wallboard, new finishes joints, treatment of vinyl-plastic tiles, characteristics of pliability, uses of cleaning of, methods fillers, use of texture panels panels, how to apply laminated fiber panels, sizes of panels, surface treatment of plastic-finish panels, uses of perforated hardboard, use in homes hanging fixtures, types of three-dimensional effect, how to achieve mastics, use of special nails, use of
Wallpaper, How to Hang papers, basic types ready-pasted papers pre-trimmed types seams, treatment of tools, essentials surface, preparation of quantity, estimation paste, types lengths, how to cut pasting trimming wall outlets, treatment of hanging, techniques ceilings, special methods
Walls, Dry, Interior, General Information
dry-wall construction, data wallboard, types wallboard, insulation hardboard asbestos — cement board Gypsum wallboard wood and plywood basic layouts for 4-ft. widths fastening, methods nailing bases nailing recommendations planking, tiles, fastening data tiles, starter strip for adhesives, use of joints, treatment of corners, treatment of tape, use of installation, tips on wallboards, how to saw wallboards, score-and-break cutting of hardboard, tips on wallboard, installation over masonry, etc. linoleum, use on walls wall preparation linoleum, installation of flexible wall coverings, types tiles, types of guide lines, use of tiles, adhesives for tiles, application of glass panels, use of glass partitions, installations wall mirrors, installation glass blocks, how to use plastering tips patchwork, data on plaster bases corner beads grounds and arches, metal
plaster, ready-mixed
base coats
finish coats	
trowel and float, how to use
texture paints, how to use

Walls, Exterior, General Information
outside walls, specifications
sheathing, types of
sheathing nails, types of
building paper, data
lapped siding, treatment of
bevel siding, overlap chart
corners, detail drawings, treatments
wide lapped siding, installation
panel siding, use of
vertical planking, methods
invisible siding joints, methods
shingles, application method
old walls, recovering of
casings, extension of
stucco, recovering method
stucco, anchor for
masonry, how to clean
stucco, tips on
walls, brick-veneer
brick and mortar, data
bricklaying, procedure
corners, treatment
stone, veneer
walls, glass, data

Wardrobes, How to Make
materials required
mirrors, use of
construction drawings
vanity, how to fit
compartments, planning
compartments, how to build

Wardrobes, see Children’s

Washer, Use as Butter Churn
conversion parts
assembly details
operation

Wastebaskets, How to Make
materials required
construction diagrams
assembly methods

Water Conditioning
water conditioning, requirements for
softened water, advantages of
home water softeners, data
zeolite, how it works
zeolite softeners, types of
water-correction equipment, other types
acid neutralizers, data
purifiers, taste and odor types of
clarifiers, turbidity
softeners, size of
filters, size of
water hardness, determination of
degasifiers, data
algae, control of
chemical feeders, data
sterilization, emergency
softening units, diagrams, figs. 1—20 incl.

Water Heaters
sizes, need determination
durability, data on
operation, cost of
water heaters, automatic, data on
electric heaters, automatic, characteristics
gas-fired water-heaters, characteristics
oil-burning water-heaters, characteristics
heater types, diagrams of
other types, uses of
furnace coils, indirect heaters, use of
water heaters, general installation of
safety controls, data on
pipes, heat loss from
hot-water systems, circulatory
tanks, tempering
tanks, draining and cleaning of
inspection, yearly

Water Pipe, General Data
faucet noises, cause and cure
water hammer, cause and cure
air chambers, servicing of
air chamber, design of
pressure, relieving devices
air chambers and shock absorbers,
location of
pressure reducing valves, data on
pipe supports, need for
water heaters, noise from
water-closets, noises from
noise in pipes, high-velocity types
leaks, data on
pipes, repairs to
tanks, leaks in
condensation, dripping from
frost protection
frozen pipes, thawing of
scale and corrosion, control of
pipes and coils, clogging of
frost, precautions
water-pressure, troubles, cures
cross-connections, hazards of
back-flow, diagram

Water Proofing, see also Condensation
Control
masonry paints, types of
composition boards, types of
furring strips, use of
ceilings, installation
tile board, special furring for
tile board, metal clips for
wood floor, installation
cabinets, how to build in
finishing tips

Wax Casting
equipment required
lost-wax processes
molds, how to make
centrifugal casting machine, data on
patterns, formula for
plaster, special mix for
detail drawings
pouring, method
wax pattern, burning out of
casting, technique
finishing details
Weather Stripping
types of stripping
air leaks, test for
doors, preparation of
locks, treatment of
metal threshold, installation of
windows, application to
Weather Vanes, How to Make
metals, choice of
squared patterns, how to use
metals, how to cut
finishing methods
wooden vane, how to make
moving parts, how to make
frontier design for ranch house
Weaving, see Basket, see Raffia, see Rug
Weaving Techniques
loom, how to make
materials required
construction drawing
textile terminology
warp beam
heddles
warp
shed
weft
shuttle
reed
weaving, process
loom, operation of
patterns, colors, use of
Wedge, see Handle Wedge
Welder, see Arc Welder, How to Build
Welding, How to Do
methods, comparison
special shapes, treatment of
steel welds, hardness of
cast iron welds, electric arc, use of
stainless steel, precautions
aluminum, methods
copper, bronze, brass, electrical resistance of
welded joints, types of
gear-rack tooth, how to build up
Welding, see Arc Welding, see Spot Welding
Wells, How to Drive
wells, locations for
wells, depth of
tools required
driving technique
rocks, problems with
pump cylinder, assembly of
pump, how to install
pump, concrete base for
Wind Indicators, How to Make
anemometer, roof location of
indicator, interior installation of
materials required
construction drawings
wiring diagram
assembly, details
Winding, Coils, Tips On
forms, how to make
cellulose tape, use of
Window Boxes, How to Make
location, exposures of
plants, grouping for box gardens
materials, choice of
drainage, provisions for
metal linings, how to make
boxes, designs for
patterns, how to use
planter shelves, exterior, how to make
shelves, decorative mounts for
boxes, brackets for
fastening, methods
Window Shade Tips
rollers, how to cut
shade cloth, how to cut
shade, reassembly of
shade, remounting
Windows, General Data
windows, types of
sliding-sash windows, data on
spring and friction counterbalances
casement windows, types of
awning-type, data on
louver-type, uses of
framing, details
bay windows, special framing for, details
casings, installation details
interior trim, application
stationary windows, data
glass-block windows, details
glass blocks, installation
window glass, general information
decorative glass
plate glass, use of
insulating glass, data
glazing, methods
putty, types of
weatherstripping, data
storm sash, installation data
window screens, combination units
shutters, types of
Window, Combination type, How to Make
materials required
construction drawings
louvers, detail
screen, detail
casing, how to fit
interior closure, how to make
assembly, details
Winterizing, Automotive, see also Cold
Weather Starting
cooling system, how to check
radiators, how to flush
radiators, reverse-flushing
cylinder head, reverse-flushing
radiator hoses, inspection of
anti-freeze, how to test
hydrometer, use of
battery load, chart
bit, angle starting of
bits, how to sharpen
bits, protection of
bits, how to straighten

Wood Carving
tools required
materials suitable
pattern, drawn on blank
grain, run of
rough, details
shaping, method
carving tips
finishing
figures, how to mount
finishes, choice of
penknife shield for carvers, how to make
ice picks, use of
simplified work for beginners
soft woods, use of
soap, use of
patterns, how to use
designs, simplified types
carving methods, data
garden variety, simplified types
garden variety, how to make
wax, use of
deer, five designs for
patterns for
carving details
finishing tips

Wood Chest and Bellows, How to Make, see
also Leather Bellows
materials list
construction drawing
assembly details
finishing details

Wood Chisel Racks, How to Make
materials required
construction drawing
assembly details
open rack, how to make
materials required
assembly data

Woods, Fancy, Sources Of
local woods
fruitwood from orchard
uses of

Wood Finishing, General Data
sanding, professional methods
staining, woods adapted to
sealer coat, application
filler, color formulae for
second sealer coat, use of
glazing, special data
finish coats, types of
finish coats, application methods
French polishing, technique
varnish finish, methods
varnish, leveling test
varnish, brushing schedule
sealer system used with varnish
shellac finish, properties of
wax finish, how to apply
brushing lacquer, how to use
sprayed lacquer finish, method
penetrating finish, application
catalyst finishes, characteristics
sanding lubricants, use of
salad-bowl finish, special materials
fir plywood, problems
fir plywood, treatment of
special sealers, use of
surface coatings, data on
sealers and top coats, chart
abrasives, use of in wood finishing
pumice, how to mix
paste, application, brush
polishing pad, felt, how to use
turnings, how to polish
carvings, treatment of
paste wax, steel-wool application
paste wax, polishing schedule
wet-or-dry sandpaper, use with oil
rottenstone, how to use
varnish, hand rubbing of
French polish, ready-made, use of
wood finishing, basic schedules
open-grain wood
close-grain wood
sanding, specifications
uniforming schedules
surface coloring systems
stain systems
blonding, data
bleach system
shellac, data
shellac and wax, method
floor sealer, penetrating
standard shellac cuts, chart
oil finish, use on guns
limed oak, how to do
ebonized oak, method
ebony finish, fruitwood
finishing waxes, types of, chart
cedar, special treatment
beechwood fir, grain control
old-world walnut, finishing materials
pickled pine, system
lacquer, spraying of
synthetic enamel, how to use
enamel, application methods
ebony black, how to duplicate
rubbed finishes
dull satin
satin
satin-to-polish
high polish
French polish
rubbing materials, chart
blond finishes, chart
bleaching materials and methods
toning, data
modern finishes, special data
Wood Lathes, How to Use, General Data
centering, methods
spur center, how to drive
recentering, tips on
wood burning, prevention of
roughing cut, how to make
gouge, use of, correct positioning of
chisel, correct usage
parting tool, how to use
shoulder, how to cut
skew, use of
bead, how to cut
cove cut, step-by-step illustrations
layout board, data, use of
back stick, how to use
sanding
faceplate and chuck turning
tool cuts in faceplate turning, drawing,
detail
ball, turning processes
ring, how to turn
surfacing, skew chisel, use of
spear-point chisel, tips on
lathe chucks, types of
polishing-head lathe for woodwork, how
to make
materials required
construction drawing
assembly, details
faceplate, how to make
lathe bench to catch waste, how to make
materials list
construction drawing
wood lathes, how to make
four-speed V-belt drive, data
materials needed
construction drawings
assembly data
lathe, swing-a-way mount for, how to make
materials required
construction details
Wood Selection, Part One
warping and shrinking, data
warp, detection of
conditioning, details
moisture content, determination
moisture content, chart
warped wood, resurfacing
grain, data
wood shrinkage, table
warp prevention
wood, craft quiz
Wood Selection, Part Two
wood, stability of
warp, types of
common woods, working properties of,
chart
heart-side, how to use
moisture content, stabilization of
machining, woods suitable for
wood-finishing data, chart
wood grading, chart
woods, figurization types
Woods, Treatment of Various Types
ash
birch
cedar
cedar
cherry
fir
gum
korina
mahogany
maple
oak
pine, white
pine, yellow
rosewood
sycamore
walnut
zebrawood
Wood Turning, see Wood Lathes
Woodworker's Tool Chest, How to Make, see also Tool Kit
materials required
construction drawings
tool compartments, planning for assembly details
Woodworking
moldings, use of novelty effects
molding, how to slice
gluing methods
finishing data
projects, how to make

Woodworking Shop
how to plan
how to set up tools
tools, selection of
cost, approximation

Woodworking Tools, Special Equipment
sanders, types of
belt and disk combination
stroker-type sander
portable model
shaper, how to use
grinder, types of
portable saws
gem-cutters
vibrating tool
flexible shafts, data on
radial saw
electric drill
planer
duplicate carver

Workbenches You Can Build
lumber list
hardware list
construction drawings
assembly techniques
vise, how to mount
bench, cabinet type
construction details
utility bench, how to make
fold away bench, how to make
saw rack
bench seat, foldaway model
materials needed
construction details
workbench drawer, secret lock for
workshop, apartment model, how to make
materials required
construction drawing
assembly data
compartment planning
Workshop, see Apartment
Workshop Furniture, Tool Panels, Cabinets, How to Make
planning data
tool panels, how to make
materials suitable
tools, how to mount
panels in walls, details
tool panels, semi-closed cabinet, how to make
construction drawing
assembly details
finishing tips
rolling cabinet, how to make
materials required
construction drawing
assembly details
Workshop Planning
tools, working area for
overlapping work areas, how to adapt
shavings box, how to make for home shop
materials required
construction details
Workshop Planning for Noise Control
rubber mounts, use of
machines, conditioning of
insulation blanket, use of
staggered studs, installation
ceiling material, installation

Workshop Wiring and Lighting, Tips On, see also Wiring
new circuits, how to add
cables, types of
receptacles, installation
power loads, estimation
lighting, types of
indirect lighting, data
fluorescent lighting, data
flush ceiling lights, how to make

Work Table, How to Make
portable model
materials required
construction drawing
assembly details
lacing, methods
finishing tips

Wrought Iron, How to Work
metal, characteristics of
metal, available forms of
heating equipment, data
twin-carbon arc torch, precautions
forge, use of
basic operations
cutting, methods
bending, devices for
scroll bends, how to make
fastenings, data
finishing, methods
Wrought Iron, see Lawn Tables

X

Xylophone, How to Make
materials required
construction drawings
leg assembly, detail
keys, tuning of
keys, how to string
finishing details

Y

Yardlight, How to Make
materials required
construction diagrams
patterns, use of
reflectors, use of
Youthbed, How to Make, see also Bunkbed

materials required
construction details
assembly methods
finishing tips
Youngster’s Chair, How to Make, see also
Upholstery
materials required
pocketed springs, use of
construction drawing
foam rubber, application of
upholstery tips
Youngster’s Chest-Bed, How to Make
materials required
construction drawing
storage compartments, plan of
assembly details
finishing data